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Abstract

The fixation of cooperation among unrelated individuals is one of the fundamental problems in biology

and social sciences. It is investigated by means of public goods games, the generalization of the prisoner’s

dilemma to more than two players. In compulsory public goods games, defect is the dominant strategy,

while voluntary participation overcomes the social dilemma by allowing a cyclic coexistence of cooperators,5

defectors, and non-participants. Experimental and theoretical research has shown how the combination

of voluntary participation and altruistic punishment—punishing antisocial behaviors at a personal cost—

provides a solution to the problem, as long as antisocial punishment—the punishing of cooperators—is

not allowed. Altruistic punishment can invade at low participation and pave the way to the fixation of

cooperation. Specifically, defectors are overpunished, in the sense that their payoff is reduced by a sanction10

proportional to the number of punishers in the game. Here we show that qualitatively equivalent results

can be achieved with a milder punishing mechanism, where defectors only risk a fixed penalty per round—

as in many real situations—and the cost of punishment is shared among the punishers. The payoffs for

the four strategies—cooperate, defect, abstain, and cooperate-&-punish—are derived and the corresponding

replicator dynamics analyzed in full detail.15

Key words: altruistic punishment, finite populations, fixation of cooperation, public goods games, replicator

dynamics.
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1 Introduction

How cooperation can emerge and be maintained among unrelated individuals in the presence of free-riders—

defectors, exploiting the others’ effort—is a long-standing puzzle (Dawes, 1980; Hardin, 1968). Public

goods games (PGGs; Kagel and Roth, 1997), where participants equally share a public resource irrespec-

tively of their individual contribution, represent the natural tool of investigation, both experimentally and in5

theoretical models.

Compulsory PGGs, in which individuals are obliged to participate (the natural generalization of the

prisoner’s dilemma to an arbitrary number of players; Boyd and Richerson, 1988; Hauert and Schuster,

1998), show that “always defect” is the dominant (evolutionarily stable) strategy (Dawes, 1980). When

more successful strategies spread (through social learning or natural selection; Schuster and Sigmund, 1983),10

cooperation will disappear from the population, along with the loss of the public goods.

Several experimental and theoretical studies have identified mechanisms that are able to relax the social

dilemma (see Nowak, 2006b, 2012, and refs. therein). When the chance to interact more than once with

the same individuals is not vanishing (e.g. in finite populations), the use of memory to reciprocate the

others’ actions and/or of communications to build and spread reputations can maintain cooperation and, in15

some cases, allow the invasion of a uniform population of defectors. Similar results have been obtained

with memoryless players in heterogeneous environments and/or with particular interaction structures (e.g.

assortative grouping) favoring encounters within clusters of cooperators; or by relying on group or kin

selection arguments. Most of the proposed mechanisms enhance the evolution of cooperation but fail to

explain its fixation—the convergence to “always cooperate” as the dominant strategy.20

Voluntary participation has been also shown to overcome the social dilemma, without requiring memory,

communications, spatial, and/or interaction structures (Hauert et al., 2002a,b; Semmann et al., 2003). Again,

cooperation cannot take over, but rather fluctuates in a rock-paper-scissors manner alternating cooperation,

defection, and abstention. Non-participants (called “loners” by Hauert et al., 2002a,b) are supposed to rely

on some alternative source for which a group activity is not required.25

Cooperation is obviously fostered by the punishment of defectors (Boyd and Richerson, 1992; Fehr and

Gächter, 2000). The punishment of antisocial behaviors is however costly and requires the identification of

defectors (also required to reciprocate and build reputations). In some cases, there are institutional mech-

anisms imposing sanctions on defectors, so the cost is covered by the public goods, though experimental
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results (de Quervain et al., 2004; Egas and Riedl, 2008; Fehr and Fischbacher, 2003; Fehr and Gächter,

2002) have shown that people voluntarily engage in altruistic punishment—paying a personal cost to punish

non-contributors.

Altruistic punishment in compulsory PGGs can lead to the fixation of cooperation (Henrich and Boyd,

2001), but the emergence of punishment in a uniform population of defectors remains problematic (and5

only explained by means of reciprocity and reputation, Sigmund et al., 2001, or group rather than individual

selection, Boyd et al., 2010, 2003).

Interestingly, allowing optional participation and altruistic punishment gives a solution to the puz-

zle, as long as antisocial punishment (Herrmann et al., 2008)—non contributors paying a cost to punish

contributors—is not allowed (the apparently illogical motivation and the effects of antisocial punishment10

will be addressed in the discussion). Fowler (2005) first proposed a voluntary PGG with the four strategies:

cooperate, defect, abstain, and cooperate-&-punish. The model shows that punishers can invade and take

over any initial antisocial state. It is however based on rather unrealistic assumptions, among which that

the proportions of the four strategists in each round of the PGG are the same as in the whole population

(or, equivalently, the whole population is involved in each round of the game). The model has been revised15

by Brandt et al. (2006), who extended the modeling assumption in Hauert et al. (2002a,b)—the PGG is

played within a group of N individuals sampled from an infinite population at each round—to the case in

which altruistic punishment is allowed. The new model showed a bistable behavior, the evolutionary (repli-

cator) dynamics converging either to the fixation of cooperation (a mix of cooperators and punishers) or to a

cooperators-defectors-loners rock-paper-scissors cycle in the absence of punishers. The authors concluded20

that “the emergence of altruistic punishment was still offering theoretical challenges”.

The challenge was resolved by the same group of authors, by relying on the inherent stochasticity

of finite populations (Hauert et al., 2007, 2008). They found “surprisingly different” results between the

stochastic simulations, where each player (in a finite population) switches, from time to time, to the strat-

egy of a better performing player, and the limiting deterministic (replicator) dynamics describing highly25

frequent sampling in an infinite population. The stochastic simulations do not show the bistable behavior

and converge to the fixation of cooperation even starting from a nearly uniform population of defectors.

The apparent contradiction can be explained in terms of the dynamic properties of the two attractors of the

bistable dynamics and will be addressed in a dedicated section.

Although criticized in some of the basic assumptions (Boyd and Mathew, 2007; Mathew and Boyd,30
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2009; Rand and Nowak, 2011), already extended to more institutional and organized forms of punishment

(Nakamaru and Dieckmann, 2009; Sasaki et al., 2012; Sigmund et al., 2010), and limited by the hypothesis

of perfect knowledge of each player’s behavior, the combination of voluntary participation and altruistic

punishment remains the sole way to support the emergence and fixation of cooperation among memoryless

players in the absence of communications, spatial, and interaction structures. However, all the models5

presented so far assume a rather strict form of punishment, hereafter referred as “overpunishment,” where

the payoff of each defector in the group of players involved in a round of the game is reduced by a sanction

proportional to the number of punishers in the group. This occurs in experiments (Egas and Riedl, 2008;

Fehr and Gächter, 2002) and models (Brandt et al., 2006; Hauert et al., 2007, 2008) of peer-punishment,

where each punisher imposes a fixed penalty, the fine for having defected, onto each defector; as well as in10

the model of pool-punishment proposed by Sigmund et al. (2010) as a first step toward an institutionalized

punishing mechanism, where, however, punishers contribute a fixed amount to the punishing pool. But in

many real situations, free-riders only risk a fixed sanction that is independent of the number of punishers

in the group—as when free-riding in a public bus—while punishers share the cost of punishment. In this

paper, we analyze this latter case, that we name shared-punishment.15

The new deterministic model is derived and fully analyzed. As a result, the new replicator dynamics are

equivalent to the case with peer-punishment (Brandt et al., 2006), so the bistable behavior persists, though

the proportion of initial conditions (the initial frequencies of the four strategies) reaching the two alternative

regimes—the fixation of cooperation and the rock-paper-scissors cycle—are different. As expected, a milder

punishment reduces the proportion of initial conditions leading to the fixation of cooperation. However, the20

dynamics being equivalent, the stochasticity of finite populations still allows the invasion and fixation of

cooperation from any initial state. The conclusion is that overpunishment is not needed, and the same

results can be obtained with a gentle punishing scheme.

The paper is organized as follows. First the average payoffs for the four strategies are derived (Sect. 2)

and the resulting expressions compared with those with peer-punishment. Then, the corresponding replicator25

dynamics are analyzed (Sect. 3). We study in particular the equilibrium at which the populations is composed

of loners only. This equilibrium is a nonlinear saddle (having all vanishing linear terms in the equations’

expansion) lying on the boundary separating the basins of attractions of the two alternative regimes. Due

to its nonlinear character, there are parameter settings for the PGG (including the basic setting used by

Brandt et al. (2006)) for which the saddle attracts a set of initial states (with nonzero measure) in the four-30
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dimensional simplex. Thus, it behaves as third possible attractor for the evolutionary orbits. By analyzing

the orbits’ behavior in the vicinity of the loners’ equilibrium, and by assuming small and rare random

fluctuations, we can correctly estimate the proportions of initial states reaching the two alternative regimes.

Finally, the reasons why the fixation of cooperation is to be expected as the sole attractor of the stochastic

simulations of a finite population are discussed (Sect. 4). Further discussion and conclusions close the paper5

(Sect. 5). For the sake of clarity, some of the technical steps are reported in Appendix and can be skipped

by the uninterested reader.

2 The voluntary PGG with peer- and shared-punishment

In the voluntary PGG with altruistic punishment proposed by Brandt et al. (2006) there are four pure strate-

gists, cooperators, defectors, loners, and punishers, whose relative densities (frequencies) in an infinite10

population are denoted by x, y, z, and w, respectively, x+ y+ z+w = 1. Each round of the game is played

by a group of N > 2 individuals randomly selected. Cooperators, defectors, and punishers participate

in the public goods interaction, whereas loners opt for the alternative activity that provides a fixed payoff

pz = σ > 0. Cooperators and punishers contribute an amount c to the public goods. The total investment

is then multiplied by a factor r > 1 (r − 1 being the investment return) and equally divided among all15

participants (equivalent results have been obtained for the case of “strictly altruistic” cooperation, where no

benefit from the individual contribution returns to the contributor; De Silva et al., 2010).

Defectors therefore benefit from the public goods without contributing, but are identified and sanctioned

by the punishers in the group, if there are any. With peer-punishment (Brandt et al., 2006), each punisher

imposes a fine β > 0 onto each defector and, in the presence of defectors, a reduced fine αβ, 0 < α < 1,20

onto each cooperator (for not contributing to the punishing; non-punishing contributors are second-order

free-riders) at personal costs γ and αγ, respectively, 0 < γ < β. With shared-punishment, we assume that,

in the presence of defectors and punishers, each defector (cooperator) is sanctioned a fixed fine β (αβ) at a

cost γ (αγ), and that the total cost of the punishment is equally shared among the punishers.

Denoting by nx, ny, nz, and nw the numbers of cooperators, defectors, loners, and punishers in the25

group, nx + ny + nz + nw = N , and by S = nx + ny + nw the number of participants in the public

goods, the payoffs for the participants are those reported in Table 1. Note that the joint activity requires,

by definition, a group of participants to be remunerable, so that a single participant is forced to behave as a
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S > 1 px py pw

nw = 0
r c nx

S
− c

r c nx

S
–

nw> 0 and ny = 0 r c (nx+nw)

S
− c = (r − 1) c –

r c (nx+nw)

S
− c = (r − 1) c

nw> 0 and ny > 0
with peer-punishment

r c (nx+nw)

S
− c− αβ nw

r c (nx+nw)

S
− β nw

r c (nx+nw)

S
− c− αγ nx − γ ny

nw> 0 and ny > 0
with shared-punishment

r c (nx+nw)

S
− c− αβ

r c (nx+nw)

S
− β

r c (nx+nw)

S
− c−

αγ nx+γ ny

nw

S = 1 σ σ σ

Table 1: PGG payoffs.

loner (case S = 1).

Other constraints to the game are:

(i) σ < (r − 1)c, as loners must get less than contributors when everybody is contributing;

(ii) r < N , which guarantees that defection dominates cooperation in the absence of loners and punishers

(the gain for a single cooperator switching to defection is c(1 − r/N) per round);5

We also constrain the numerical values of the game parameters to the following ranges:

(iii) N ∈ (2, 100], r = (2, 50], c = 1, σ = (0, 49), β = (0, 50], γ = (0, 50), α = (0, 1).

When unable to prove statements analytically, we test them against the feasible parameter settings on a fine

grid over the above ranges.

Note that the contribution c is kept fixed in (iii). In fact, by measuring payoffs (and therefore also σ, β,10

and γ) in units of c, we can always set c = 1 (this corresponds to replace σ, β, and γ with σ̃ c, β̃ c, and γ̃ c,

where σ̃, β̃, and γ̃ are the new scaled parameters, factor c in front of all payoffs, see Table 1, and divide all

payoffs by c). However, in the following we prefer to leave c indicated as a parameter of the PGG.

Given the frequencies (x, y, z, w) of the strategies in the population, the average payoff for each strategy

is computed (following Hauert et al., 2002a) by summing the payoff values corresponding to all possible

compositions for the group of N players, each weighted by the probability of sampling the composition

from the population. With peer-punishment, the average payoffs (in the form presented in Hauert et al.,5
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2008) are

Px = zN−1σ + rc(x+w)B(z)− cF (z) − w(N − 1)G(y)αβ, (1a)

Py = zN−1σ + rc(x+w)B(z) − w(N − 1)β, (1b)

Pz = σ, (1c)

Pw = zN−1σ + rc(x+w)B(z)− cF (z) − [x(N − 1)G(y)αγ+ y(N − 1)γ] , (1d)
︸ ︷︷ ︸

loner activity

︸ ︷︷ ︸

public goods interaction

︸ ︷︷ ︸

punishment

with

B(z) :=
1

1− z

(

1−
1− zN

N(1− z)

)

(2a)

determining the average benefit returned by the public goods,

F (z) := 1 + (r − 1) zN−1 −
r

N

1− zN

1− z
(2b)

measuring the effective cost of contributing, and

G(y) := 1− (1− y)N−2 (2c)

taking into account that cooperators are punished only in the presence of defectors in the group.10

With shared-punishment, the average payoffs (computed in Appendix A1) only differ in the punishment

terms, that result in

Px = · · · −Gx(y,w)αβ, (3a)

Py = · · · −Gy(w)β, (3b)

Pw = · · · −
[ x

w
Gx(y,w)αγ +

y

w
Gy(w)γ

]

(3c)

with

Gx(y,w) := 1− (1− y)N−1− (1−w)N−1 + (1− y−w)N−1 and (4a)

Gy(w) := 1− (1−w)N−1 (4b)
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respectively measuring the probability for cooperators and defectors to be punished.

Comparing the punishment terms in Eqs. (1) and (3) is straightforward. In Eqs. (1a,b) the punishment,15

when imposed, is proportional to the average number of punishers in the group (w(N−1)) and the individual

cost of punishing in Eq. (1d) is proportional to the average number of individual to be punished (x(N − 1)

cooperators and y(N − 1) defectors). With shared-punishment, Eq. (3), the punishment, when imposed, is

simply αβ for cooperators and β for defectors, while the w at denominator in Eq. (3d) indicates that the

total cost of punishment is equally shared among the punishers.

3 The corresponding replicator dynamics

The replicator equation ẋ = x(Px − P̄ ), being P̄ = xPx + yPy + zPz + wPw the average payoff in the5

population, and similarly for the other strategies, describes the strategies’ evolution through social learning

or natural selection (Schuster and Sigmund, 1983) in the four-dimensional simplex x+ y + z + w = 1.

The (numerically generated) replicator dynamics on the boundary faces of the simplex are portrayed

in Fig. 1. Panels a and b respectively show the dynamics with peer- and shared-punishment for the basic

parameter setting used by Brandt et al. (2006). Obviously, the punishing scheme makes a difference only10

when both defectors and punishers are present, i.e. on the faces z = 0 and x = 0 (the triangles x-y-w

and y-z-w; the other two triangles are therefore not reported in panel a). However, the differences are only

quantitative, i.e., the dynamics with peer- and shared-punishment are equivalent on the boundary faces.

In the following, we briefly review and integrate the analysis of the four faces separately, as previously

discussed in Hauert et al. (2002a,b) with no punishment and in Brandt et al. (2006) and Hauert et al. (2008)5

with peer-punishment. In particular, we show that different scenarios are possible (both with peer- and

shared-punishment for suitable parameter settings) on the faces z = 0 (Fig. 1c) and x = 0 (Fig. 1d,e;

scenarios in panel e are only possible with peer-punishment).

3.1 The face w = 0

The voluntary PGG with no punishment is analyzed in detail in Hauert et al. (2002a). If r > 2 there is a10

unique interior equilibrium M surrounded by infinitely many (neutrally stable) periodic orbits (cooperators-

defectors-loners rock-paper-scissors cycles; see Fig. 1b). If r ≤ 2 (not shown in the figure) there are

no interior equilibria and all orbits come from and converge to the loners’ equilibrium z = 1 (so-called
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Figure 1: Panels a and b: replicator dynamics on the boundary faces of the simplex with (a) and without (b) overpunishment.

Parameter values: N = 5, r = 3, c = 1, σ = 1, β = 1.2, γ = 1, α = 0.1 (the basic setting used by Brandt et al. (2006)). Panel

c: alternative scenario for the face z = 0, obtained with overpunishment. Parameter perturbations from the basic setting: γ = 0.3,

α = 0.8. Panels d,e: alternative scenarios for the face x = 0, obtained with overpunishment. Parameter perturbations from the

basic setting: N = 4, σ = 0.1,

d1 d2 d3 d4 e1 e2 e3
β, γ 1.2, 0.4 0.6, 0.55 0.6, 0.2 0.68, 0.67 0.8, 0.75 0.8, 0.4 0.8, 0.6

Equivalent dynamics for cases c and d are obtained without overpunishment for the same parameter values.

homoclinic orbits to z = 1).

3.2 The face y = 015

In the absence of defectors, cooperators and punishers behave the same and have higher payoff than loners.

Their frequencies therefore increase by maintaining the initial ratio up to fixation (x+w = 1) (as shown in

the x-z-w triangle of Fig. 1b). The x-w edge is made of infinitely many (neutrally stable) equilibria.

3.3 The face z = 0

The x-w edge is (obviously) stationary also in the absence of loners, but the stability of equilibria is different.20

An equilibrium (1− w, 0, 0, w) is (neutrally) stable if defectors cannot invade, i.e., if Py < Px = Pw. This
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yields

w >
N− r

N(N−1)

c

β
:= wmin < 1 if β >

N− r

N(N−1)
c := βmin, never otherwise (5a)

with peer-punishment and

w > 1−

(

1−
N− r

N

c

β

) 1

N−1

:= wmin < 1 if β >
N− r

N
c := βmin, never otherwise (5b)

with shared-punishment. There are stable equilibria close enough (w > wmin) to the punishers’ vertex

w = 1 only if the sanction β is larger than the threshold βmin.

Note that βmin is smaller with peer-punishment (recall that N > 2) and that wmin in (5a) is smaller than

in (5b) (proved in Appendix A2), so that peer-punishment favors the stability of x-w equilibria. Also note5

that assuming β > c (as indeed done by Brandt et al. (2006)) implies β > βmin, so there would always

be stable equilibria on the x-w edge. With peer-punishment, however, the punishment for a defector can

exceed c even for β < c, so parameter settings with β < c might also be interesting to explore (whereas

β > c should be required with shared-punishment). Since our interest is in the fixation of cooperation, in

the following we assume β > βmin.10

On the y-w edge, both strategies cannot be invaded. At y = 1, Pw < Py is guaranteed by the PGG

assumptions (see Appendix A6 for the evaluation of Pw at w = 0). At w = 1, Py < Pw requires the

condition on β in (5). Under this assumption, imposing Py = Pw at the generic point (0, 1 − w, 0, w),

one gets a unique solution corresponding to the equilibrium Q in Fig. 1. With peer-punishment, an analytic

expression is available, yQ := (β − βmin)/(β + γ), wQ := 1 − yQ = (βmin + γ)/(β + γ), whereas15

yQ can be determined only numerically with shared-punishment (the proof of the uniqueness is reported in

Appendix A3). Similarly to what happens on the x-w edge, peer-punishment yields a lower wQ (numerically

verified for the feasible parameter settings in the ranges indicated in note (iii), Sect. 2). Thus, as expected,

overpunishment increases the chances for cooperation to go to fixation, in the sense that the fraction of initial

conditions on the face z = 0 leading to the x-w edge is larger (compare the faces z = 0 in Fig. 1a,b).20

The stability of equilibrium Q is also studied in Appendix A3. If α is sufficiently small, then Px > Pw

at Q (cooperators are not punished at α = 0), so cooperators can invade, hence Q repels also transversally

to the y-w edge (Fig. 1a,b). All orbits in the interior of the x-y-w triangle come from point Q and converge
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either to y = 1 or to one of the stable equilibria on the x-w edge. The orbit separating the two cases is

tangent to the x-w edge at w = wmin. In contrast, Px < Pw at Q when γ is sufficiently small (punishers25

punish at no cost at γ = 0), so cooperators cannot invade and Q is a saddle (Fig. 1c). In this case an interior

repellor is also present and one of the orbits emanating from it is tangent to the x-w edge at w = wmin and

separates (together with the stable manifold of Q) the initial conditions reaching y = 1 from those leading

to the x-w edge. The two situations are separated by a so-called transcritical bifurcation (Kuznetsov, 2004;

Meijer et al., 2009) for the corresponding replicator equation.

3.4 The face x = 0

The interior orbits come from point Q also in the y-z-w triangle in Fig. 1a,b. The only attractor here is

the equilibrium w = 1. However, it does not attracts all interior initial conditions, as some (shaded in

the figure) are attracted by the saddle equilibrium z = 1. This peculiar behavior is made possible by the5

nonhyperbolicity of the saddle (having all vanishing linear terms in the equations’ expansion) and is proved

in Appendix A4. A particular orbit emanating from Q and converging to z = 1 separates the basins of

attraction of the two alternative regimes. The loners’ equilibrium, though unstable, thus behaves as an

attractor (in the Milnor’s sense—nonzero measure of the basin of attraction).

For different parameter settings other scenarios are possible. Those reported in panels d1–d4 can occur10

with peer- as well as shared-punishment, whereas scenarios e1–e3 are only possible with peer-punishment

(numerically verified, see note (iii) in Sect. 2). The transitions among the various scenarios involve:

– the transcritical bifurcation at which equilibrium Q changes stability (see Appendix A3); transitions

from panel a to d2 and d4–e1;

– the bifurcations of the nonlinear saddle (see Appendix A4); transitions a–d1 and d2–d4;15

– a so-called saddle-node bifurcation (Kuznetsov, 2004; Meijer et al., 2009) at which two internal equi-

libria (a saddle and a repellor) appear/disappear; transitions a–e3 and d1–e2 (the bifurcation has been

characterized numerically and has not been found with shared-punishment).

In all cases, w = 1 remains the only proper attractor, with z = 1 behaving as such in some of the cases

(where its basin of attraction is shaded in Fig. 1).20
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3.5 The simplex interior

Depending on the initial condition in the simplex interior, the replicator dynamics converge to one of three

possible regimes: one of the stable equilibria on the x-w edge, with the consequent fixation of cooperation;

one of the stable cycles on the face w = 0; the loners’ equilibrium z = 1 (numerically verified with a

mix of simulation and continuation—Dhooge et al., 2002—techniques for the feasible parameter settings in25

the ranges indicated in note (iii), Sect. 2). The latter possibility went unnoticed in Brandt et al. (2006) and

Hauert et al. (2008) and is again due to the nonlinear character of the saddle equilibrium z = 1 (having all

vanishing linear terms).

Similarly to what happens on the face x = 0, there are parameter settings for which z = 1 is attracting

a set of initial conditions with nonzero measure in the simplex interior. This attractive behavior cannot

be proved by means of the techniques used in Appendix A4 (effective only when the dynamics are two-

dimensional), but is confirmed by the numerical simulations. In fact, there are parameter settings (including

the case of Fig. 1a,b) for which the simulations starting from a significant fraction of equally spaced initial5

conditions in the simplex interior seem to converge to z = 1. Although, numerically, there is no way to

know whether z = 1 is attracting the orbit or behaving like an hyperbolic saddle—there are orbits spending

arbitrarily long times close to z = 1 in both cases—there are also parameter settings for which none of our

simulations converge to z = 1.

There can be therefore three attractors for the replicator dynamics in the simplex interior: A, the set of10

stable equilibria on the x-w edge; B, the interior of the face w = 0; C , the loners’ equilibrium z = 1. Fig. 2

shows the (numeriaclly estimated) basins of attractions of the three attractors for the basic parameter setting

used in Fig. 1a,b. The general message is that cooperation goes to fixation if punishers are initially enough,

but punishers cannot invade a uniform population of defectors. The required initial frequency of punishers is

however vanishing close to the loners’ equilibrium and this is the key feature for the fixation of cooperation15

when allowing small stochastic fluctuations in the frequencies of the four strategies (see Sect. 4).

Stochastic fluctuations indeed play a relevant role close to the loners’ equilibrium. The orbits attracted

by z = 1, and even those passing sufficiently close to it when z = 1 is behaving like an hyperbolic

saddle, spend so much time there, that the deterministic description of the evolutionary dynamics becomes

questionable. Allowing stochastic fluctuations in the four frequencies after a long time spent close to z = 120

means that, from time to time on a slower time scale, tiny fractions of the population make a trial in the
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Figure 3: Fractions of initial conditions with z > 1 − ε leading to attractors A, B, and C with peer- (top) and shared- (bottom)

punishment (see Appendix A5 for the details on the classification algorithm). Parameter values as in Fig. 1a,b. The limiting (ε → 0)

fractions pA, pB , and pC = 1−pA−pB can be used as probabilities to reach A, B, and C randomly starting close to z = 1.

PGG. Since the three outcomes A, B, and C can all be obtained when starting from an initial condition

close to z = 1, as shown in Fig. 3, stochastic fluctuations close to z = 1 make A and B the only two

ultimate attractors for the evolutionary dynamics, according to the Markov process in the figure (nodes A

and B are the only absorbing states of the Markov process).5

Fig. 4 reports the analysis with respect to the model parameters of the fractions of (equally spaced)

initial conditions converging to the three possible attractors A, B, and C (see Appendix A5 for the details

on the classification algorithm). Green, red, and blue dashed lines show the fractions associated to attractors
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Figure 4: Parametric analysis of the fractions of initial conditions leading to attractors A, B, and C with peer- (left) and shared-

(right) punishment. Green, red, and blue dashed lines: fractions leading to attractor A, B, and C, respectively; green and red solid

lines: corrected fractions leading to attractor A and B; black dashed: yQ; black dotted: area of the triangle Q-(w=wmin)-(w=1)
within the face z = 0. Other parameters as in Fig. 1a,b.

A, B, and C . The solid green and red lines show the corrected fractions associated to attractors A and B

when taking stochastic fluctuations close to z = 1 into account (the C fraction, multiplied by pA/(1− pC )10

is added to the A fraction, and similarly for the B fraction, to count any possible visit to C before ultimately

reaching A or B, see Fig. 3). The black dashed line reports the frequency yQ, used by Brandt et al. (2006)

as a “rule of thumb” for the fraction associated to A. From the dynamics on the face z = 0 (Fig. 1a–c), one

can indeed see that the larger is yQ, the larger is the set of initial conditions converging to the x-w edge. The

same can be said for the frequency 1−wmin (see (5)) and what matters even more is the area of the triangle

Q-(w=wmin)-(w=1) (black dotted line in Fig. 4).

Fig. 4 confirms that the frequencies yQ and the area of the triangle Q-(w=wmin)-(w=1) both correlate

with the fraction of initial states leading to the fixation of cooperation. It also confirms that peer-punishment

always yields a larger fraction associated to attractor A.5
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4 The fixation of cooperation

We now discuss why it is licit to expect the invasion and the eventual dominance of altruistic punishers, when

considering the stochastic effects of a finite population. In the stochastic simulations (Hauert et al., 2007,

2008), each player updates his/her own strategy by imitating a player who is selected, from time to time,

with a probability proportional to the player’s performance in the PGG (in another, basically equivalent,10

scheme used by Sigmund et al., 2010, a focal and a target player are randomly chosen and the focal player

adopts the strategy of the target player with a probability that increases with the difference in the expected

payoff; see e.g. Nowak, 2006a for further discussion on social learning). In addition, each player has a

small probability to blindly change to another strategy at random (“mutation”). This process yields the

deterministic replicator dynamics in the limit of frequent sampling in the absence of mutations in a large

population. Roughly speaking, one can think of the deterministic orbits as the expected path followed by

the stochastic process in the limit of vanishing variance.5

Stochastic fluctuations within or transversal to an attractor of the deterministic dynamics may have re-

markably different effects. Transversal fluctuations, e.g. moving the system’s state from a stable equilibrium

on the x-w edge slightly to the simplex interior, are reabsorbed due to the attractiveness, while those within

the attractor, e.g. moving the state to a nearby stable equilibrium on the x-w edge, are not and cause a

neutral drift in the system’s state. The presence of infinitely many (neutrally) stable equilibria and cycles,10

as those on the x-w edge and on the face w = 0 (Fig. 1a–c), is therefore a source of neutral drift that cannot

be neglected even at a very small fluctuations’ variance.

As a consequence, the punishers’ equilibrium w = 1 becomes the global attractor of the evolutionary

dynamics. In fact, once the deterministic orbit reaches attractor B, the drift among the infinity of cycles

guarantees that, sooner or later, the system’s state passes close to the loners’ equilibrium z = 1. There,15

punishers can invade and lead the state to attractor A. Again, the drift among the infinity of equilibria must be

considered, so that the state eventually reaches either w = 1 or w = wmin, the other extreme of the segment

of stable equilibria. At w = 1, only a mutation can change the system’s state, but the further imitation

dynamics bring back the states on the x-w edge, at (or close to) w = 1. At w = wmin a transient can

be triggered by the invasion of defectors, possibly converging again to attractor B, but eventually punisher20

will come to dominate again. And even starting from a uniform population of defectors, the same kind of

dynamics is triggered by the invasion of loners.
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Note that the system’s state can spend a significant time at (or close to) any of the simplex vertexes.

There, the population is nearly uniform and, if mutations are rare, the evolutionary dynamics are slow.

However, while all vertexes but w = 1 are unstable, so the dynamics point away from them, the punishers’25

equilibrium is stable, though not attracting, so the system’s state remains in the vicinity. Only the neutral

drift along the x-w edge can then move the state significantly away from w = 1, but, being random, it often

brings the state back to w = 1.

In conclusion, as confirmed by the stochastic simulations in Hauert et al. (2007) and Hauert et al. (2008),

after the initial transient the system’s state remains at (or close to) the punishers’ equilibrium for most of

the time, and only cooperators invading by neutral drift can break the punishers’ dominance. Most of the

time, the drift is reabsorbed, but occasionally (when the drift reaches w = wmin) it triggers a transient

with large oscillations in the strategies’ frequencies (temporary passing close to attractor B), that eventually5

reestablishes another phase of punishers’ dominance.

5 Discussion and conclusions

In this study we relaxed the peer-punishment scheme adopted in the voluntary PGG modeled by Brandt et al.

(2006) (and in most of the related experiments; de Quervain et al., 2004; Egas and Riedl, 2008; Fehr and

Fischbacher, 2003; Fehr and Gächter, 2002). Instead of each punisher in the group of interacting players10

imposing a sanction onto each defector, each defector is sanctioned a fixed fine and the total cost of punishing

is shared among the punishers. We named such a punishing scheme shared-punishment and shown it works

just as well, qualitatively, as peer-punishment. In particular, when allowing for the stochastic effects of a

finite population (Hauert et al., 2007), both peer- and shared-punishment support the emergence and fixation

of cooperation.15

Sanctioning defectors (and non-punishing contributors as second-order free-riders) in proportion to the

number of punishers among the PGG participants “overpunishes” antisocial behaviors with respect to many

real situations. However, such overpunishing has been used in all experimental and theoretical studies, so

far, including the first attempt to model the emergence of institutional forms of sanctioning (Sigmund et al.,

2010) and the recent investigations of antisocial punishment (non-contributors punishing contributors; see20

Rand and Nowak, 2011, and ref. therein). While the idea of sharing the cost of punishing is already adopted

in the pool-punishment of Sigmund et al. (2010) (in this case it is the cost to the punisher, and not the
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sanction, that is fixed), our shared-punishment is the first punishing scheme where free-riders only risk a

fixed sanction per PGG round, independently of the number of encountered punishers. It can be interpreted

as a rudimentary forms of sanctioning institution, where the punishing pool is formed a posteriori among25

the punishers involved in the public goods interaction.

Shared-punishment is a form of altruistic punishment and, as such, it can be challenged by antisocial

punishment (Herrmann et al., 2008). As recently shown by Rand and Nowak (2011), allowing a general-

ized form (all-to-all) of (over-) punishment, thus including antisocial punishment, annihilates the positive

effect of punishment in promoting the evolution of cooperation. In particular, punishing the others’ strategy30

self-protects players from others’ invasion (just as altruistic punishers are protected from the invasion of

defectors), so that drifting from a uniform population of self-protecting cooperators (resp. defectors, loners)

to a uniform population of the same strategy of non-punishers restores the rock-paper-scissors oscillations

of the voluntary PGG with no punishment (Hauert et al., 2002a,b). Although rarely observed in western

human societies (if not in the form of retaliation; Herrmann et al., 2008), antisocial punishment questions5

any punishing mechanism aimed at fostering cooperation and should be therefore considered and possibly

controlled. This opens further important directions for future research.

We explored our shared-punishment scheme for a wide range of parameters (see note (iii) in Sect. 2). The

fractions of initial conditions (the positive initial frequencies of the four strategies cooperate, defect, abstain,

and cooperate-&-punish) converging to each of the two ultimate attractors of the deterministic evolutionary10

dynamics—the fixation of cooperation at a mix of punishing and non-punishing cooperators (A) and the

rock-paper-scissors oscillations with no punishers (B)—are reported Fig. 4. As qualitatively discussed in

Brandt et al. (2006), the fixation of cooperation (the green fraction) is enhanced by enlarging the group of

interacting players (parameter N ), by exacerbating the sanction (and proportionally its cost; parameters β

and γ), and by increasing the reward (parameter r).15

We also considered the effect of punishing cooperators as second-order free-riders (parameter α), an

issue that recently received some attention. As discussed in (De Silva et al., 2010; Fowler, 2005; Hauert

et al., 2007, 2008), the role of punishing second-order free-riders is surprisingly marginal in voluntary PGG,

and this is confirmed by our analysis which shows it even (slightly) opposes the fixation of cooperation.

However, second-order punishment gains back importance in the light of the pool-punishment model of20

Sigmund et al. (2010). There, peer- and pool-punishers compete with non-punishing cooperators, defectors,

and loners. Pool-punishers a priori contribute to a punishing pool, a public goods later used to punish
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first- and second-order free-riders. This facilitate the sanctioning of second-order free-riders—the players

not contributing to the punishing pool who later cooperate but do not punish defectors—and, as a result,

pool-punishers invade and come to dominate only in the presence of second-order punishment. The natural

emergence of institutional forms of sanctioning, not imposed by a higher authority, seems to require second-5

order punishment.

We conclude by going back to the idea of a fixed sanction. We see as interesting the extension in this

direction of the current experimental setups and models of peer- and pool- punishing, possibly including an-

tisocial or all-to-all punishment, with the aim of confirming that avoiding overpunishing yields qualitatively

similar results.10
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group composition symbol probability

N players with S participant P (N,S)

(

N

S

)

(1− z)SzN−S

N players with S participant

and nx cooperators P (N,S, nx) P (N,S)

(

S

nx

)(

x

1− z

)nx
(

y + w

1− z

)S−nx

N players with S participant,

nx cooperators, and ny defectors

(and nw=S−nx−ny punishers)

P (N,S, nx, ny) P (N,S, nx)

(

S − nx

ny

)(

y

1− x− z

)ny
(

w

1− x− z

)S−nx−ny

Table A1: Sampling probabilities. Sampling from an infinite population follows a binomial distribution. Multiple requirements on

the group composition are resolved by means of conditional probabilities: P (A ∩ B ∩ C) = P (A)P (B|A)P (C|A ∩B).

Appendix

A1 Computation of the average payoffs

In this appendix we compute the average payoffs Px, Py , and Pz for cooperators, defectors, and punishers5

(3a,b,d) in the case with shared-punishment. We formulate each average as the sum of the possible values—

the obtained payoffs according to Table 1—weighted by the probabilities of occurrence of the corresponding

compositions for the group of N players, see Table A1.

Px = σP (N−1, 0)
︸ ︷︷ ︸

no other participants

+

N∑

S=2

S∑

nx=1

(r c nx

S
− c
)

P (N−1, S−1, nx−1, S−nx)

︸ ︷︷ ︸

no punishers

+
N∑

S=2

S−1∑

nx=1

(r−1)cP (N−1, S−1, nx−1, 0)

︸ ︷︷ ︸

with punishers and no defectors

+

N∑

S=3

S−2∑

nx=1

S−nx−1∑

nw=1

(
r c (nx+nw)

S
− c− αβ

)

P (N−1, S−1, nx−1, S−nx−nw)

︸ ︷︷ ︸

with punishers and defectors

(A1a)
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Py = σP (N−1, 0)
︸ ︷︷ ︸

no other participants

+
N∑

S=2

S∑

ny=1

r c (S−ny)

S
P (N−1, S−1, S−ny, ny−1)

︸ ︷︷ ︸

no punishers

+
N∑

S=2

S−1∑

ny=1

S−ny∑

nw=1

(
r c (S−ny)

S
− β

)

P (N−1, S−1, S−ny−nw, ny−1)

︸ ︷︷ ︸

with punishers

(A1b)

10

Pw = σP (N−1, 0)
︸ ︷︷ ︸

no other participants

+

N∑

S=2

S∑

nw=1

(r−1)cP (N−1, S−1, S−nw, 0)

︸ ︷︷ ︸

no defectors

+
N∑

S=2

S−1∑

nw=1

S−nw∑

ny=1

(
rc(S−ny)

S
− c−

αγ (S−ny−nw)+γny

nw

)

P (N−1, S−1, S−ny−nw, ny)

︸ ︷︷ ︸

with defectors

(A1c)

The expressions in (3) have then been obtained by resolving the sums with the Newton binomial and have

been handled and checked with computer algebra.

A2 The threshold wmin

In this appendix we prove that wmin is smaller with peer- (5a) than with shared- (5b) punishment, i.e., that

N − r

N(N − 1)

c

β
< 1−

(

1−
N − r

N

c

β

) 1

N−1

(A2a)

for any feasible parameter setting (N > 2, r < N , and β > βmin). Letting

a =
N − r

N

c

β
and b =

1

N − 1
,
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(A2a) can be rewritten as

ab < 1− (1− a)b , (A2b)

with a ∈ (0, 1) (due to β > βmin, see (5b)) and b ∈ (0, 1
2
) treated as a real number.

Let us rewrite inequality (A2b) as

b > fa(b) :=
log (1− ab)

log (1− a)
(A2c)

and consider fa(b) as a a-parametric family of functions of b ∈ [0, 1]. Since fa(b) is nonnegative and

concave in b ∈ [0, 1] for any a ∈ (0, 1),

d2fa

db2
=−

a2

(1− ab)2 log(1− a)
> 0,

and coincides with the lefthand side of inequality (A2c) at b = 0 and b = 1, then (A2c) certainly holds for

any pair (a, b) with a ∈ (0, 1) and b ∈ (0, 1
2
).5

A3 The equilibrium point Q

A3.1 Uniqueness with shared-punishment

The equilibrium Q on the y-w edge of the simplex is determined by solving Py = Pw for yQ at point

(0, yQ, 0, 1−yQ). This gives the same solutions yQ ∈ (0, 1) than Q(yQ) := (Pw(yQ)− Py(yQ)) (1−yQ) =

0.10

With shared-punishment, we have

Q(yQ) = (β + γ)yNQ − βyN−1

Q +
(

c
(

1−
r

N

)

− (β + γ)
)

yQ + β − c
(

1−
r

N

)

.

Note that Q(0) = β − βmin > 0 under (5b), Q(1) = 0, and Q′(1) = (N − 1)γ + βmin > 0 by the PGG

assumptions. Thus, there is certainly a solution yQ ∈ (0, 1). The uniqueness follows from the fact that the

curvature Q′′(y) = (N −1)yN−3[N (β + γ)y − (N −2)β] cannot change sign twice for y ∈ (0, 1).
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A3.2 Stability on the face z = 0, transversally to the y-w edge15

With peer-punishment, Px > Pw at Q yields

α <
yQ

1− yQ − (1− yQ)
N−1

γ

β
.

With shared-punishment, it gives

α <
yQ

1− yQ −
(1− yQ)

N

1− yN−1

Q

γ

β
.

Note that the righthand side is positive in both cases (being yQ ∈ (0, 1)) and possibly larger than one when

γ is sufficiently close to β. Thus, equilibrium Q is a repellor (unstable also transversally to the y-w edge)

if γ and α are sufficiently large and small, respectively. Vice versa, Q is a saddle (Px < Pw at Q) if γ is

sufficiently small compared to α.

A3.3 Stability on the face x = 0, transversally to the y-w edge

With peer-punishment, at Q we have

Pw = −(N − 1)2
(

βmin +
β − c

N − 1

)
βmin+ γ

β + γ
,

with βmin := (r − 1)c/(N(N − 1)) given in (5b). Thus, if β > c, then Pw < 0 at Q and Pz > Pw for5

any σ > 0, so that equilibrium Q is a repellor (unstable also transversally to the y-w edge). Note that if

β = βmin, then Pw = (r − 1)c > 0 at Q (Q collides with the vertex w = 1), so for some βmin < β < c

equilibrium Q is a saddle for sufficiently small σ.

With shared-punishment, Pw at Q can be positive also for β > c (e.g. Pw ≃ 0.19 for the setting of

Fig. 1a,b), so that equilibrium Q can be a saddle if σ is sufficiently small.10

A4 Analysis of the loners’ equilibrium

In this appendix we analyze the replicator dynamics in the interior of the face x = 0 in the vicinity of the

loners’ equilibrium z = 1. In particular, we show that z = 1 is a nonhyperbolic saddle, with vanishing

Jacobian, able to attract a set of initial conditions with nonzero measure in the face x = 0.
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The replicator equation on the face x = 0 is two-dimensional and we use variables y and w, being15

z = 1− y−w and (y,w) = (0, 0) the loners’ equilibrium z = 1. Expanding in (y,w) powers, the equation

reads

ẏ = Y2(y,w) + Y3(y,w) + · · · , ẏ = W2(y,w) +W3(y,w) + · · · , (A3)

where there are no linear terms,

Y2(y,w) := −(N −1)σy2 + (N −1)
(
1

2
rc− β − σ

)
yw and

W2(y,w) := (N −1)
(
1

2
(r−2)c − γ − σ

)
yw + (N −1) ((r−1)c−σ) w2

collect quadratic terms with peer- as well as shared-punishment, and Yk(y,w) and Wk(y,w), k > 2, collect

the higher order terms (up to order (N+1), with differences between peer- and shared-punishment), and are20

such that Yk(0, w) = Wk(y, 0) = 0, being the (y,w)-axes (representing the y-z and z-w edges) invariant.

We use the blow-up transformation u = w/y (Andronov et al., 1973; Berezovskaya et al., 2007) and

study the system in the coordinates (y, u) for small |y| 6= 0, where the equilibrium (y,w) = (0, 0) has been

stretched into the u-axis. With the time-scaling τ = yt (that inverts the direction of time for y < 0), the

new equations are

ẏ = yY2(1, u) + y2Y3(1, u) + y3Y4(1, u) + · · · , u̇ = U3(1, u) + yU4(1, u) + y2U5(1, u) + · · · , (A4)

with U(y,w) := yW (y,w)− w Y (y,w).

It is well known that all orbits of system (A3) asymptotically reaching (y,w) = (0, 0), forward or5

backward in time, do that along characteristic directions w = ūy corresponding to the equilibria (0, ū)

of the blown-up dynamics (A4) plus, in our case, the invariant direction y = 0. From (A4) it follows

that ū must be a root of the third-order polynomial U3(1, u) = W2(1, u) − uY2(1, u). The associated

eigenvalues are λu(ū) := dU3(1, u)/du|u=ū along the eigenvector y = 0 and λy(ū) := Y2(1, ū) along

vy(ū) := (Y2(1, ū)−λu(ū),W3(1, ū)− ūY3(1, ū)). If such equilibria are all hyperbolic (λu(ū)λy(ū) 6= 0),

then the dynamics (A4) for small |y| 6= 0 are dominated by the linear terms and this induces a partition of

a sufficiently small neighborhood of (y,w) = (0, 0) into sectors (called Brouwer sectors) with qualitatively5

known dynamics. We now apply these arguments to system (A3).

The polynomial U3(1, u) has degree two (Y2(1, u) is linear in u and W2(1, u) is quadratic), with roots
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root of U3(1, u) λu λy

ū1= 0 − 1

2
(N−1)(2γ − (r−2)c) −(N−1)σ

ū2=
2γ − (r−2)c

2β + (r−2)c
1

2
(N−1)(2γ − (r−2)c) − 1

2
(N−1)

c
2
r (r−2)−2c((r−2)β+rγ)+4(βγ+βσ+γσ)

2β + (r−2)c

Table A2: Roots of U3(1, u).
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Figure A1: Original (top) and blown-up (bottom) dynamics. Parameter values: a, as in Fig. 1a,b; b, as in Fig. 1e1; c, as in Fig. 1d1

but γ = 0.2; d, as in c but β = 3.

and associated eigenvalues reported in Table A2 (note that ū1 = 0, with eigenvector vy(ū1) = (1, 0),

corresponds to the invariance of the y-axis).

If10

r < 2
(

1 +
γ

c

)

(A5)

(as in Fig. 1a,b), then equilibrium (0, ū1) is stable and (0, ū2) is unstable (λu(ū2) = −λu(ū1) > 0) with

positive ū2 (see Fig. A1a,b). If also λy(ū2) < 0, i.e., if

c2r(r−2)−2c((r−2)β+ rγ)+4(βγ+βσ+γσ) > 0, (A6)

(see Table A2), then equilibrium (0, ū2) is a saddle (Fig. A1a) and the neighborhood of (y,w) = (0, 0) is

partitioned into four sectors (the sector separatrices are the thick orbits in the figure). In two sectors system
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(A3) behaves like a node (so-called parabolic sectors), stable for y > 0 and unstable for y < 0; in the other15

two sectors the system behaves like a saddle (hyperbolic sectors).

If the lefthand side of (A6) is negative, then the equilibrium (0, ū2) is a repellor (Fig. A1b). Part of

the orbits emanating from it converge to (0, ū1) and correspond, in the original coordinates, to homoclinic

orbits to (y,w) = (0, 0). The neighborhood of (y,w) = (0, 0) is again partitioned into four sectors, two of

parabolic type (one attracting and one repelling) and two of so-called elliptic type (those with the homoclinic20

orbits).

The two situations are separated by a so-called pitchfork bifurcation (Kuznetsov, 2004; Meijer et al.,

2009) for system (A4). Either an internal repellor is present when (0, ū2) is a saddle and there are no

internal equilibria when (0, ū2) is a repellor (so-called sub-critical pitchfork, see Fig. 1d2,d4, respectively),

or an internal saddle is present when (0, ū2) is a repellor and there are no internal equilibria when (0, ū2) is25

a saddle (super-critical pitchfork, see Fig. 1e1, a). The internal equilibrium (and a symmetric one for y < 0

that is irrelevant for our purposes) collides with z = 1 at the bifurcation and determines the sector transition

from case a to case b in Fig. A1 (d2 → d4 in Fig. 1) and vice versa (e1 → a in Fig. 1).

When condition (A5) is reversed, then equilibrium (0, ū1) is a saddle (λu(ū1) > 0), whereas (0, ū2),

with negative ū2, is stable under (A6) and a saddle if (A6) is reversed (see Fig. A1c,d). In both cases,5

however, the positive quadrant of the (y,w) plane is an hyperbolic sector, so (y,w) = (0, 0) behaves like a

saddle (see, e.g., Fig. 1d1)).

In conclusion, we have proved that with peer- as well as shared-punishment (the only differences in the

analysis being in the eigenvector vy(ū2) and in the criticality of the pitchfork bifurcation that involve the

third and higher order terms in Yk(1, ū2) and Wk(1, ū2)) there are feasible parameter settings (including the10

basic one used in Brandt et al. (2006)) for which a set of initial conditions with nonzero measure in the face

x = 0 (shaded in Fig. A1a,b) is attracted by the loners’ equilibrium z = 1.

A5 The classification algorithm

Initial conditions in the simplex interior are selected at the vertexes of regular tetrahedra with edge 1/n

(n > 2) filling the simplex, without considering the vertexes on the simplex boundary. This results in15

n−3∑

i=1

n−i−2∑

j=1

n−i−j−1
∑

k=1

1 = 1

6
(n− 1)(n− 2)(n− 3)
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equally spaced initial conditions, in the sense that each of the strategies’ frequencies x(0), y(0), z(0), w(0)

is quantized into multiples ε = 1

n (there are (n − 3) ways of choosing x(0) ∈ { 1

n , 2

n , . . . , n−3

n }, as

all frequencies must be positive; given x(0) = i/n there are (n− i− 2) ways of choosing y(0); given

y(0) = j/n there are (n− i− j − 1) ways of choosing z(0); w(0) = 1− x(0)− y(0)− z(0)). In the

computation we have used n = 100 (156849 initial conditions).20

The orbit of the replicator dynamics is followed until one of the conditions below is matched:

A, x(t1)+w(t1)> 1−ε for some t1 > 0 (at which w(t1)>wmin, see (5)) and z(t)< 1−ε for t ∈ [0, t1];

B, w(t) < ε for t in an interval [t1, t2] in which ż(t) changes sign nloop times with z(t) < 1− ε for

t ∈ [0, t2] (we have used nloop = 10);

C , z(t)> 1− ε for some t1 > 0.25

In cases A and B the initial condition is associated to the corresponding attractor. In case C the orbit remains

in the vicinity of the loners’ equilibrium z = 1 for so long that, as described in Sect. 3.5, the deterministic

description of the evolutionary dynamics becomes inappropriate. The simulation is therefore interrupted

and the initial condition is temporarily associated to a “dummy” state “near C” (corresponding to the state

z(0)> 1− ε in the Markov chain of Fig. 3).

To complete the classification, we need to compute the probabilities pA and pB (pC = 1−pA−pB) of the

Markov chain. For this, a coarser set of initial conditions is used by filling the tetrahedron closest to z = 1

with smaller tetrahedra with edge ε/m (m > 2) and by considering the onesixth(m− 1)(m− 2)(m− 3)5

non-boundary vertexes. In the computation we have used m = 20 (969 initial conditions). Now the orbit of

the replicator dynamics is followed until one of the conditions below is matched:

A, x(t1)+w(t1)> 1− ε for some t1 > 0 (at which w(t1)>wmin, see (5));

B, w(t) < ε for t in an interval [t1, t2] in which ż(t) changes sign nloop times with z(t) > ε at the zeros

of ż(t);585

C , the maximum time T is reached (we have used T = 109 and checked that z(T ) > 1− ε/m).

The probabilities pA and pB are estimated as the fraction of initial conditions yielding cases A and B,

respectively.

The classification is completed by counting as associated to attractors A, B, and C , respectively the

fractions pA, pB, and pC of the initial conditions in the “dummy” state.590
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A6 Computational issues

Functions B(z) and F (z) in (2) are not defined at z = 1. However, they can easily be defined there by

continuity. They are actually smooth functions in [0, 1], as they have the following polynomial expressions:

B(z) =
1

N

N−1∑

k=1

k zN−1−k, F (z) = r (1− z)B(z) − (r − 1)(1− zN−1).

Similarly, the w at the denominator in (3c) makes the punishers’ payoff not defined at w = 0. However, the

following polynomial relations hold:595

1

w
Gy(w) =

N−1∑

k=1

(
N −1

k

)

wk−1(1− w)N−1−k,

1

w
Gx(y,w) =

1

w
Gy(w)−

N−1∑

k=1

(
N −1

k

)

wk−1(1− y − w)N−1−k.

The above polynomial expressions are numerically more accurate to be computed and have been used in the

implementation of the average payoffs (1) and (3).
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