
Automatic Partitioning and Simulation of Weakly Coupled Systems

Alessandro Vittorio Papadopoulos, Johan Åkesson, Francesco Casella, and Alberto Leva

Abstract— Many control engineering tasks nowadays rely on
the simulation of complex multi-physics systems. Modern tools
allow to build the required dynamic models conveniently, thanks
to Object-Oriented Modelling languages, e.g., Modelica, and
to perform simulations with hardly any additional effort on
the part of the analyst. However, when simulation speed is of
concern, the same tools fall short of exploiting some useful
properties of the model, namely – to focus on the subject
of this work – the possibility of partitioning said model in
“weakly” coupled submodels. This work proposes an automatic
method to perform a structural analysis aimed at identifying
weak couplings in the system, providing the information needed
for the mentioned partition. This information is here used to
feed a mixed-mode integration method, leading to a significant
improvement in terms of simulation speed.

I. INTRODUCTION

Modelling and simulation of complex physical systems
have received increasing attention in the last years, in par-
ticular in the control domain. Even if the control design is
usually based on simple models – most often a linearised
one is sufficient – the controller should be validated on a
more accurate description of the real plant.

Moreover, several important control applications require
to simulate accurate models in real time. Model reference
adaptive controllers, for example, make use of a reference
plant model as part of the online control law [1]. This
requires the model to be simulated in real time in parallel
with the plant, both being driven simultaneously by the same
input signals.

The main problem, however, is that simulating accurate
models usually takes a lot of time and computational re-
sources, which in some cases is, e.g., in real-time applica-
tions, is not acceptable. Therefore, finding a way to improve
simulation efficiency is thus crucial and worth investigating.
In this work, a novel method to improve simulation perfor-
mance is presented.

The paper is outlined as follows. Section II describes the
related work, and specifies the scope of the paper. Section III
presents a brief overview on classical integration meth-
ods used in real-time simulation. The proposed partitioning
method is described in Section IV, while the mixed-mode
integration method is described in Section VI. In Section VII
the method is applied to some physical examples and the
obtained results are discussed. Section VIII concludes the
paper.

II. RELATED WORK AND MOTIVATION

In recent years the introduction of new modelling tech-
niques, e.g., Object-Oriented Modelling (OOM), has simpli-

A.V. Papadopoulos, F. Casella and A. Leva are with Dipartimento di
Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano,
Italy. {papadopoulos,casella,leva}@elet.polimi.it

J. Åkesson is with Department of Automatic Control, Lund University,
Lund, Sweden. johan.akesson@control.lth.se

fied and streamlined the task of building accurate description
of complex dynamic systems. Such dynamic models usually
yield large Differential Algebraic Equations (DAEs) systems,
which, in many cases, have dynamic variables that evolve
within different time-scales (a property often referred to as
stiffness). There exist solvers able to cope with stiffness, e.g.,
Backward Differentiation Formulas (BDFs) methods [1], [2],
but their computational burden most often prevents their use
in real-time applications.

Moreover, neither implicit nor explicit methods can cope
with stiff systems efficiently. Typically, explicit methods have
to employ too small steps, since the fastest time-constant
governs the stability of the integration method, while implicit
methods have to solve, at each step, large nonlinear systems
of equations.

An interesting solution has been presented in [3], based
on the idea of zeroing out certain elements of the Jacobian,
i.e., neglecting some couplings in the system, leading to
a structure that can be exploited to improve simulation
performance. Another interesting work is [4], which proposes
a mixed-mode integration method, i.e., one that is in between
of Explicit Euler and Implicit Euler, for real-time simulation.
In [4] the system is partitioned into two subsystems through
a heuristic criterion based on eigenvalues analysis of the
linearised model. However, both the mentioned methods
require some insight on the model in order to partition it
in an effective manner.

On the other hand, there is a vast literature in the field
of co-simulation [5]–[9], which is based on the idea that
monolithic systems can be partitioned in different subsystems
on the basis of some physical considerations, e.g., exploiting
weak couplings. This allow to numerically integrate the
subsystems separately having some communication infras-
tructure in charge of synchronizing the subsystems and
managing the overall simulation.

The main limitation to this approach is that the partition
has to be defined a priori, trying both to identify which
are the parts of the model that are weakly coupled and
to minimize the number of “communication variables” or
“interfaces” among the subsystems. Moreover, it is not
trivial to fit this framework to existing OOM and simulation
tools [10].

Other methods aimed at simulation speedup, exploiting
weakly coupled model components have been already pro-
posed in the literature [7], [11], [12], but they are often
domain-specific and the structural analysis needed is far from
being automatic.

In this paper, an automatic procedure to identify sub-
systems evolving within different time-scales is presented.
Since the proposed method is based on the analysis of the
“dependency cycles” among the model dynamic variables,
it is called cycle analysis method. The information coming

from the cycle analysis is thus used to improve simulation
efficiency through a mixed-mode integration method.

III. INTEGRATION METHODS OVERVIEW

To better understand some of the results presented in
this work, a brief review of explicit and implicit integration
methods and of their properties is in order.

Explicit single-step methods are widely used in real-time
simulation, since they are keen to comply with real-time
requirements. Their computational effort is relatively low and
constant and the number of calculations per step can be easily
estimated. Those methods can deal fairly well with discon-
tinuous input signals, since they do not use information from
the past. Thus, for non-stiff ordinary differential equations,
explicit single-step methods are by common opinion the best
choice.

Among them, Explicit Runge-Kutta (ERK) methods are
the most widely adopted; the simplest ERK method is the
Explicit Euler (EE) one. The numerical stability region of
ERK methods are the interior of the curves shown in Fig. 1.

−5 −4 −3 −2 −1 0 1 2

−2

0

2

ℜ{λ ·h}

ℑ
{λ
·h
}

ERK1
ERK2
ERK3
ERK4

Fig. 1. Numerical stability domains of ERK (interior of the curves).

On the other hand, implicit methods require solving a
system of (in general) nonlinear equations at each integration
step, which implies the use of iterative methods, such as the
Newton one. The computational effort for each step cannot
be estimated reliably, as it depends on the (theoretically
unbounded) number of iterations. Hence, implicit methods
are not really suited for of real-time simulation, unless the
number of iterations is kept bounded to a fixed value. Implicit
Runge-Kutta (IRK) methods are widely adopted as implicit
single-step integration methods and are suited for dealing
with stiff systems; the simplest IRK method is Implicit Euler
(IE).

IV. THE PARTITIONING METHOD

Summarising for brevity, only low-order explicit methods
seem well suited for real-time simulation. In the absence of
stiffness, discontinuities, or badly nonlinear implicit equa-
tions, those methods work properly. But, as already stated
in Section II, multi-physics systems are usually made of
components exhibiting different time-scales. For example

in mechatronical systems a slow mechanical part is often
controlled by fast electric circuits or by a hydraulic drive.

The main idea of this work is to find a systematic way to
separate the different dynamics present in the model and to
numerically integrate them with different methods, trying to
exploit the advantages of both explicit and implicit methods.
The most important contribution of this paper is the proposal
of an automatic procedure to identify the possible submodels.

A. Overview
Referring to Fig. 1, and focusing for a moment to linear

systems, a first possible idea to perform the partitioning is
the following. Acting on the choice of the integration step h
of an explicit method, the system eigenvalues can be moved
inside or outside its numerical stability region.

If one wants all the eigenvalues to lie inside the stability
region, then the choice of h is limited by the faster dynamics.
On the other hand, if a larger value of h is chosen, then
some eigenvalues lie outside the numerical stability region.
In this case two subsystems can be easily identified: a fast
subsystem, associated with the outer eigenvalues, and a slow
subsystem associated with the inner ones.

A straightforward solution to partition the model is thus
to cut the subspace spanned by the eigenvectors associated
with the fast eigenvalues. However, it is not always possi-
ble, because in the nonlinear case it involves a coordinate
transformation at each integration step, as the linearisation
is state-dependent. Moreover, the partition properties may
change in time and this is is hard to fit with the a priori
partition needed for co-simulation. As a consequence, state
selection criteria are preferable, also in accordance with [4].

The methodology proposed herein takes a different view-
point, and is aimed at associating a specific time-constant
with each dynamic variable in the system, without perform-
ing an eigenvalue analysis.

Coming to the proposed method, let the state-space form
of a continuous-time system

ẋ = f (x,u) (1)

that discretised with EE with an integration step h yields

xk+1 = xk +h · f (xk,uk) . (2)

Suppose now that (2) is at an asymptotic stable equilib-
rium, i.e., xk+1 = xk. If a small perturbation is applied to a
single state variable xk, a transient occurs, and two things
may happen:

1) the perturbation affects the other state variables, with-
out in turn re-affecting xk;

2) the perturbation, after some integration steps, re-affects
xk.

In the first case, no numerical instability can be introduced
by the numerical integration process, but in the second case
there is a “dependency cycle” among some state variables
that may lead to unstable behaviours of the integration
algorithm, depending on how the perturbation propagates.
Intuitively, if the perturbation is amplified along the depen-
dency cycle, a numerical instability may occur.

The proposed method detects the dependency cycles that
are present in the system, and defines conditions under which

this perturbation cannot lead to numerical instability, i.e., it
is attenuated.

B. Preliminary definitions
Before going into the details of the method, some prelim-

inary definitions are in order.
Definition 1: A path p in a digraph (or directed graph)

G = (N,E) is an ordered sequence of nodes such that from
each of its nodes there is an edge to the next node in the
sequence. Formally, letting L the length of the path, and p(i)
the i-th node in the path p,

∀i ∈ {1, . . . ,L−1}∀p(i) ∈ p ∃!(p(i), p(i+1)) ∈ E.

A path is denoted as p = 〈nstart, . . . ,ni, . . . ,nend〉.
Definition 2: A path with no repeated nodes is called a

simple path (or walk).
Definition 3: A simple cycle c is a simple path which

starts from a root node i ∈ N and ends with the same node.
The length of a simple cycle is L, where L is also the number
of non-repeated nodes in the cycle.

It is intuitive from Definition 3 that the longest possible
simple cycle in a digraph G with |N| nodes, has length
|N| (Hamiltonian circuit). In the following, the terms simple
cycle and cycle will be used indifferently.

It is also worth noticing that, given a cycle c, the cycles

〈c(i),c(i+1), . . . ,c(j),c(i)〉 ≡ 〈c(j),c(i),c(i+1), . . . ,c(j)〉

are equivalent. In fact, they actually represent the same cycle,
since the same edges (and the same nodes) are involved.

C. Cycle analysis
The first step in the cycle analysis is to build the de-

pendency digraph G = (N,E) associated with the model. In
particular, there is a node n ∈ N for each state, and the set
of edges E ⊆ N×N is formed as

ei,i = 1+h · ∂ fi

∂x j
, ei, j = h · ∂ fi

∂x j
, ∀i 6= j

where h is the integration step and the ∂ fi/∂x j are the
elements of the Jacobian of the continuous-time system.
In other words, the Jacobian of (1) multiplied by h is the
adjacency matrix of the weighted digraph, and accounts
for the propagation entity of the disturbance from the i-th
variable to the j-th one.

The second step in the cycle analysis is to detect the set
C of all cycles contained in the directed graph. Hence, for
every cycle c ∈ C detected in G a cycle gain is computed.

Definition 4: A cycle gain µc(h) of a cycle c ∈ C is

µc(h) = ∏
xi,x j∈c

ei, j =

1+h

∂ fi

∂xi
if L = 1

hL ·∏xi,x j∈c
∂ fi

∂x j
if L > 1

where ei, j are the edges involved in the cycles and L is the
length of the cycle.

In other words, the cycle gain quantifies how much the
disturbance given to a single state variable xi ∈ c is amplified
along one cycle c. Apparently, by suitably constraining this
quantity, we ensure that no numerical unstable behaviours
can occur.

In fact, starting from the computed µc(h), for each cycle
inequalities of the form |µc(h)| ≤ α , yielding

0 < h≤ (1+α)

∣∣∣∣∂ fi

∂xi

∣∣∣∣−1

if L = 1 and
∂ fi

∂xi
< 0

0 < h≤ L
√

α ·
∣∣∣∣∏xi,x j∈c

∂ fi

∂x j

∣∣∣∣−
1
L

otherwise.

(3)
are introduced, where α is an upper bound on the allowed
amplification of the disturbance entering the cycle (see
Section IV-A). As a result, every cycle c ∈ C has been
associated with a constraint on h, i.e., with an upper bound
on the integration step which allows the perturbation not to
be amplified along c.

Finally, each variable xi is associated with the most
restrictive constraint on h among the set of cycles Cxi =
{c ∈ C |xi ∈ c}. Formally,

maximize hi

subject to |µc(h)| ≤ α, ∀c ∈ Cxi .

The result of the cycle analysis is that each dynamic
variable is associated with an upper bound of the integration
step needed for a numerically stable integration, thus with a
quantity related to its time-scale. As a result, the variables
can be ordered, for example, by increasing value of hi and
presented to the analyst, who can decide how to cut the
model.

In the following, to put the idea to work, a mixed-mode
integration method is considered, where the model needs to
be split into two subsystems integrated with a single step h
(details in Section VI). The cut is thus defined with the choice
of the integration step which practically defines a threshold
over which the state variables can be considered “slow” –
thus integrated with an explicit method – and under which
the variables are considered “fast”.

D. Remarks

A first remark is related to the information coming from
the cycle analysis. In particular, it is worth noticing that
cycle analysis dictates not only the time-scales associated
with each state variable, but also which are the variables
that are mutually interacting together, i.e., the cycles. This
information is not exploited in this work for space limitation,
but it can be used to identify independent components in
the model – the strongly connected components of the
dependency graph – to make the simulation code parallel.

A second remark deals with the computational complexity
of the method. Unfortunately the problem of finding all the
cycles in a digraph has complexity O

(
2|E|−|N|+1

)
, and is a

well-known and studied problem in the operation research
community [13]–[15]. This is of course a limitation with
strongly connected digraphs, but sparse ones are more com-
mon in real applications, especially if weakly couplings exist.
This is due to the fact that in many physical models there
is a neat separation among the states coming from different
physical domains.

On the other hand, it is worth stressing that cycle analysis
must be done only once for a given model, during an offline
phase, before the simulation is started. Spending more time

for an automatic structural analysis aimed at speeding up the
simulation is an acceptable tradeoff.

A last remark is related to the choice of α . This is the
unique parameter of the method. It controls the tradeoff
between the accuracy of the resulting simulation, and how
much the system can be decoupled. In particular, the lower
the α , the higher the accuracy of the resulting simulation,
the lower the capability of the method to identify weakly
coupled components, and vice-versa.

A good “default” choice of α is intuitively 1, since we
want the perturbation to be attenuated along the cycle, i.e.,
we want the cycle gain |µc| < 1. There are, however, some
cases in which the choice of α can be critical, and in
particular in the case of loosely damped systems.

V. LOOSELY DAMPED MODELS AND STABILITY ISSUES

Referring again to the stability region in Fig. 1 for EE (the
smallest one), it is apparent that complex eigenvalues with a
low damping factor can easily lead to numerical instability.

Consider, for example, a linear, time-invariant and au-
tonomous system of the form:

ẋ =

[
−ωnξ −ωn

√
1−ξ 2

ωn
√

1−ξ 2 −ωnξ

]
x (4)

with the natural frequency ωn > 0 and damping factor 0 ≤
ξ ≤ 1, which has two complex conjugate eigenvalues

λ1,2 =−ωn ·
(

ξ ± ı
√

1−ξ 2
)
.

If the eigenvalues of the corresponding discrete-time sys-
tem computed with EE are computed, the stability condition
is

h < 2
ξ

ωn
:= hs (5)

On the other hand, the obtained cycle gains are

µ〈1,1〉 =e1,1 = 1+h
∂ f1

∂x1
= 1−hωnξ

µ〈2,2〉 =e2,2 = 1+h
∂ f2

∂x2
= 1−hωnξ

µ〈1,2,1〉 =e1,2 · e2,1 = h2 · ∂ f1

∂x2
· ∂ f2

∂x1
=−h2

ω
2
n (1−ξ

2).

which lead to the following constraints

|µ〈1,1〉|< α ⇒ h≤ 1+α

ωnξ
:= hc,1

|µ〈2,2〉|< α ⇒ h≤ 1+α

ωnξ
:= hc,2

|µ〈1,2,1〉|< α ⇒ h≤ 1
ωn
·
√

α

1−ξ 2 := hc,3

(6)

Comparing the upper bounds as hs≤ hc,i, i.e., investigating
when the cycle analysis gives an upper bound greater than
the actual stability condition as a function of α , leads to

2
ξ

ωn
≤ 1+α

ωnξ

2
ξ

ωn
≤ 1

ωn
·
√

α

1−ξ 2

⇒

{
α ≥ 2ξ 2−1
α ≥ 4ξ 2

(
1−ξ 2

)

The conditions on α depend only on the damping factor
ξ . In particular, for ξ → 0 also α → 0, i.e., the integration
step should tend to 0 as the damping factor decreases. The
highlighted area in Fig. 2 represents the region of values α

that preserve the stability of the system.

0.5 1

1

2 (√
1+
√

5
2

,

√
5−1
2

)
Numerical
instability

Numerical
stability ξ

α

Fig. 2. Stability conditions on the parameter α w.r.t. ξ .

VI. MIXED-MODE INTEGRATION METHOD

One of the possibilities opened by the information coming
from the cycle analysis is to perform a mixed-mode integra-
tion method. In fact, if the states are ordered by decreasing
value of the associated time-constant, the model can be cut
in “slow” and “fast” dynamics, as anticipated, by simply
choosing a the fixed integration step used in the simulation.
Accordingly to the remarks of Section III, the fast dynamics
can be integrated with an implicit method (IE is used in
the following as an example), while for the slow dynamics
an explicit method (here, EE) can be used with a larger h
with respect to a pure explicit one. Therefore, with these
example choice, the discrete-time system associated with the
continuous-time one reads asxs

k+1 = xs
k +h · f

(
xs

k,x
f
k,uk

)
x f

k+1 = x f
k +h · f

(
xs

k+1,x
f
k+1,uk+1

)
This means that the fast component x f

k+1 can be computed
considering xs

k+1 as an input. Fig. 3 shows the resulting
mixed-mode integration scheme.

EE

IE

uk xs
k+1

x f
k+1

Fig. 3. Explicit/Implicit Euler integration scheme.

VII. PHYSICAL EXAMPLES

In the following two examples coming from physical
modelling are presented, showing the effectiveness of the
approach. The design parameter α is set to 1. The simulations
were performed using Assimulo1, fed with models written in
Modelica and exported through JModelica into Functional
Mock-up interface (FMI) descriptions [16].

1http://www.jmodelica.org/assimulo

A. DC motor
Consider a simple physical system, i.e., a DC motor. The

motor can be represented by a third order model of the form: L · İ = −R · I− km ·ω +u(t)
J · ω̇ = km · I−b ·ω− τ(t)

ϕ̇ = ω

(7)

where L = 3mH is the armature inductance, R = 50mΩ is
the armature resistance, J = 1500kg m2 is the inertia, b =
0.001kg m2/s is the friction coefficient, and km = 6.785V s
is the electro-motorical force (EMF) constant of the motor.
These parameter values correspond to those of a real system.
The inputs are the armature voltage, u(t), and the torque load,
τ(t), respectively. In the given example, u(t) is 500V, and
the torque is of 2500N m.

The cycle analysis leads to the following constraints:

I : h≤ 0.032
ω : h≤ 0.221
ϕ : h≤ 0.500

hence, choosing an integration step h = 0.2 leads to a
partition of the system that is natural, separating the electrical
components from the mechanical variables. Fig. 4 shows the
simulation results.

0

20

40

60

ω
(r

ad
/s

)

0

0.5

1

·104

I
(A

)

0 2 4 6 8
0

200

400

time (s)

ϕ
(r

ad
)

Fig. 4. Simulation results of Model (7). Dashed lines represent the real
trajectories, while the solid lines the mixed-mode ones.

Table I shows the simulation statistics for different integra-
tion methods. It is worth noticing that the dimension of the
system the Newton iteration has to solve is reduced from 3 to
1 in the mixed-mode method. Notice, also that the EE method
needs a smaller step size (h = 0.01) for numerical stability
reasons. Apparently, the mixed-mode method performs better
than the others also in this very simple case.

TABLE I
SIMULATION STATISTICS FOR MODEL (7).

Mixed-mode BDF IE EE
Steps 40 255 40 800
Function ev. 123 283 122 –
Jacobian ev. 2 5 2 –
Fun. ev. in Jac. ev. 4 15 8 –
Newton iterations 83 279 82 –
Newton fail 0 0 0 –
Accuracy 1.139 – 1.531 1.876
Sim time 0.03s 0.09s 0.05s 0.22s

B. Counterflow heat exchanger
This example refers to a counterflow heat exchanger

with two incompressible streams (Fig. 5). Both streams and

Ta,i wa

Wall

Tb,i wb

Ta,1

Tw,1

Tb,N

Fig. 5. Counterflow heat exchanger scheme.

the interposed wall are spatially discretised with the finite
volume approach, neglecting axial diffusion in the wall –
as is common practice – and also in the streams, as zero-
flow operation is not considered for simplicity. Taking ten
volumes for both streams and the wall, with the same
spatial division (again, for simplicity) leads to a nonlinear
dynamic system of order 30, having as boundary conditions
the four pressures at the stream inlets and outlets, and the
two temperatures at the inlets. More precisely, the system is
given by

ca
Ma

N
Ṫa,i =waca · (Ta,i−1−Ta,i)+

Ga

N
· (Tw,i−Ta,i)

cw
Mw

N
Ṫw,i =−

Ga

N
· (Tw,i−Ta,i)−

Gb

N
· (Tw,i−Tb,N−i+1)

cb
Mb

N
Ṫb,i =wbcb · (Tb,i−1−Tb,i)+

Gb

N
· (Tw,N−i+1−Tb,i)

(8)
where T stands for temperature, w for mass flowrate, c for
(constant) specific heat, M for mass, and G for thermal
conductance; the a, b and w subscripts denote respectively
the two streams and the wall, while i ∈ [1,N] (i = 0 for
boundary conditions) is the volume index, counted for both
streams from inlet to outlet, the wall being enumerated like
stream a.

TABLE II
PARAMETER VALUES OF MODEL (8).

Parameters
N 10 Mb 1kg cw 3500J/(kg K)
Ta,in 323.15K Mw 10kg Ga 8000W/K
Tb,in 288.15K ca 4200J/(kg K) Gb 8000W/K
Ma 0.1kg cb 3500J/(kg K)

Notice that in this example there is no neat physical
separation between the dynamics. In fact, the cycle analysis

leads to the following constraints:

Ta,i : h≤ 0.0084
Tb,i : h≤ 0.0478

Tw,1,10 : h≤ 0.0478
Tw,2,9 : h≤ 0.0498

Tw,3,8 : h≤ 0.0524
Tw,4,7 : h≤ 0.0559
Tw,5,6 : h≤ 0.0606

By choosing an integration step h = 0.04 yields a partition
of the system that considers the Ta,i as the fast while the Tb,i
and Tw,i as the slow states. Fig. 6 shows the simulation results
— notice that the temperatures are reported with different
scales.

290

300

310

320

T a
,i

(K
)

290

300

310

320

T w
,i

(K
)

0 1 2 3 4 5

290

295

300

305

time (s)

T b
,i

(K
)

Fig. 6. Simulation results of (8). Dashed lines represent the real trajectories,
while the solid lines the mixed-mode ones.

Table III shows the simulation statistics for different
integration methods. It is worth noticing that, since the
complexity of IE is O(n3), where n is the dimension of
the model, integrating implicitly only Ta,i instead of the
whole model, reduces the computations from 303 = 27000 to
103 = 1000, leading to a significant improvement in terms of
simulation efficiency. Notice also that the EE method needs
a smaller step size (h = 0.01) for numerical stability reasons.

VIII. CONCLUSION AND FUTURE WORK

A method to automatically partition a dynamic model
for efficient simulation was presented based on the idea of
cycle analysis. Peculiar to the method is the capability of
providing the analyst with a clearly interpretable parameter
to govern the partition procedure, related to the time-scale of
the different model’s dynamics. Once that parameter is set,
the selection of fast and slow states is straightforward and
automatic. As a result, the partitioned system can be used

TABLE III
SIMULATION STATISTICS FOR MODEL (8) (h = 0.04).

Mixed-mode BDF IE EE
Steps 125 260 125 500
Function ev. 375 296 375 –
Jacobian ev. 6 5 6 –
Fun. ev. in Jac. ev. 66 150 186 –
Newton iterations 250 292 250 –
Newton fail 0 0 0 –
Accuracy 0.019 – 0.018 0.107
Sim time 0.06s 0.21s 0.12s 0.15s

either to take advantage of mixed-mode integration, i.e., for
real-time simulation, or even as a baseline for co-simulation.

The method was implemented in python and used jointly
with JModelica through the FMI standard, complementing
the classical manipulation toolchain. This also demonstrates
how it can be seamlessly interpreted in OOM tools [10].
Examples were reported to show the effectiveness of the
proposed ideas.

Future research directions will be to better investigate the
role of parameter α with respect to accuracy and numerical
stability issues, to exploit the information coming from the
cycle analysis to parallelise the simulation, and to explore
possible uses in co-simulation contexts.

REFERENCES

[1] F. Cellier and E. Kofman, Continuous system simulation. Springer,
2006.

[2] E. Hairer and G. Wanner, Solving Ordinary Differential Equations
II: Stiff and Differential-Algebraic Problems, ser. Springer Series in
Computational Mathematics. Springer, 2004.

[3] A. Schiela and F. Bornemann, “Sparsing in real time simulation,”
ZAMM - Journal of Applied Mathematics and Mechanics, vol. 83,
no. 10, pp. 637–647, 2003.

[4] A. Schiela and H. Olsson, “Mixed-mode integration for real-time
simulation,” in Modelica Workshop 2000 Proc., 2000, pp. 69–75.

[5] B. Gu and H. Asada, “Co-simulation of algebraically coupled dynamic
subsystems,” in American Control Conference, 2001. Proceedings of
the 2001, vol. 3, 2001, pp. 2273–2278.

[6] R. Kübler and W. Schiehlen, “Two methods of simulator coupling,”
Mathematical and Computer Modelling of Dynamical Systems, vol. 6,
no. 2, pp. 93–113, 2000.

[7] S. Schops, H. De Gersem, and A. Bartel, “A cosimulation framework
for multirate time integration of field/circuit coupled problems,” IEEE
Transactions on Magnetics, vol. 46, no. 8, pp. 3233–3236, 2010.

[8] J. Bastian, C. Clauß, S. Wolf, and P. Schneider, “Master for co-
simulation using FMI,” in Proc. of the 8th Int. Modelica Conf., 2011.

[9] T. Schierz, M. Arnold, and C. Clauß, “Co-simulation with commu-
nication step size control in an fmi compatible master algorithm,” in
Proc. of the 9th Int. Modelica Conf., 2012.

[10] A. V. Papadopoulos and A. Leva, “Automating dynamic decoupling in
object-oriented modelling and simulation tools,” in 5th International
Workshop on Equation-Based Object-Oriented Modeling Languages
and Tools., 2013.

[11] F. Casella, A. Leva, and C. Maffezzoni, “Dynamic simulation of a con-
densation plate column by dynamic decoupling,” in Proc. EUROSIM
’98, Espoo 1998, 1998, pp. 368–374.

[12] F. Casella and C. Maffezzoni, “Exploiting weak interactions in object-
oriented modeling,” Simulation News Europe, vol. 22, pp. 8–10, 1998.

[13] R. Tarjan, “Enumeration of the elementary circuits of a directed
graph,” SIAM Journal on Computing, vol. 2, no. 3, pp. 211–216, 1972.

[14] D. Johnson, “Finding all the elementary circuits of a directed graph,”
SIAM Journal on Computing, vol. 4, no. 1, pp. 77–84, 1975.

[15] L. Goldberg and G. Ann, Efficient algorithms for listing combinatorial
structures. Cambridge Univ Pr, 2009, vol. 5.

[16] C. Andersson, J. Andreasson, C. Führer, and J. Åkesson, “A work-
bench for multibody systems ODE and DAE solvers,” in Proceedings
of the IMSD2012 - The 2nd Joint International Conference on Multi-
body System Dynamics, 2012.

