
A general control-theoretical methodology
for runtime resource allocation in computing systems

Alberto Leva, Alessandro Vittorio Papadopoulos, and Martina Maggio

Abstract— Control theory is emerging as a source of solutions
for many problems in the computing systems domain, and
in particular for resource allocation. However, the techniques
proposed to date in the literature, do not successfully address
the difficulty of devising allocation schemes that are general
enough, provide stability guarantees, and can be parametrised
and managed by system administrators, or computing systems’
practitioners at large. This paper proposes a two-level time-
varying control scheme for the allocation of a generic resource,
and proves its stability. In addition, the paper discusses how
the scheme can be made acceptable by computing systems
administrators, and how to tune the involved parameters. A
simulation campaign is reported, validating the aforementioned
claims.

I. INTRODUCTION

Control theory has recently provided a wide variety of
contributions to the design and implementation of computing
systems [2]–[4], [14], [18]. In fact, the computing system
community has recognised the need for adaptation, and the
capabilities of feedback control [5] to realise it. Examples
of the so obtained solutions are complementing an operating
system scheduler with admission policy to enforce dead-
lines [10], [20], [21] or assigning reservation periods [1],
[15], [19]. To appreciate the generality of the problem, the
interested reader can refer, e.g., to works like [14].

The idea of using control-theoretical design methodologies
is particularly promising in resource allocation. In fact, the
literature contains several attempts to tackle the problem
by means of feedback, spanning from fuzzy logic [13] to
reinforcement learning [4]. However, an unsolved challenge
is to find a general scheme that can be applied to any
type of resource. Also, the found solution should be easy
to configure. If parameters are involved, practitioners who
are not supposed to have expertise in the decision-making
domain of choice, should be able to select the correct
parameters to obtain a prescribed behaviour of the system.

In the area of resource allocation, a lot of attention was
devoted to the CPU, that is the main computing resource.
The presented work builds on previous contributions. In [11]
we proposed an analysis of why controlling computing
systems is different from applying control theory to any other
domain. We applied the principles to the specific problem of
“feedback scheduling”, and developed a two-level control
scheme that allocates the CPU to the running tasks in a
computing system [7]. The implementation of the scheme
in an embedded device with a real kernel was subject of

A. Leva, A.V. Papadopoulos are with Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.
{leva,papadopoulos}@elet.polimi.it

M. Maggio is with Lund University, Department of Automatic Control,
Lund, Sweden. martina.maggio@control.lth.se

studies [12] and benchmarking proved that the so-developed
control system is useful for practical applications. However,
there still were some open issues in the stability proof for
the mentioned scheme, that are the main contribution of this
paper.

The paper is organised as follows. Section II presents the
methodology for the control system development, while Sec-
tion III delves into the stability proof. Section IV discusses
an important matter for practical application, which is how to
translate requirements that are domain specific into “entities”
of the devised control solution, comprehensible for system
administrators. Results are presented in Section V, while
Section VI concludes the paper.

II. METHODOLOGY

This section reviews the aspects of the theory on feedback
resource allocation that are relevant to understand the content
of this paper and its contribution. The term feedback resource
allocation is related to the term “feedback scheduling” and
refers to the application of feedback-based techniques to the
assignment of computing resources to running processes. In
fact, it is possible to see any computing system as a set of
finite resources that tasks consume in order to get their jobs
done. In the following, the two terms application and task
are interchangeable: a task is some computation that require
resources to terminate.

Among these resources, the most common are CPU,
memory and disk. However, in principle it is possible to
formulate the problem of allocating energy and power to
the running applications. Another resource that in principle
could be considered is a generic form of instructions that are
executed on the machine. In this paper, we will allocate a
generic resource. The approach that we present works under
the following assumptions:

1) the running applications are competing for the resource
that we are allocating, some of them can require more
and some other may need less of this resource;

2) the number of tasks is time-varying, however the task
pool changes sporadically with respect to the allocation
time scale;

3) there is a physical limitation to the amount of resource
that is assignable to the competing tasks, for example
because the amount of CPU is limited and two applica-
tions can not consume the same CPU simultaneously;

4) there is no a priori assumption on how the resource
will be used by the applications.

The first three assumptions simply describes the normal
operation of a computing system, where the distributed
resources are limited. The fourth assumption is a call for
generality. In fact, even though with some resources it could



be in principle possible to assume some kind of usage
pattern, this is not feasible for every possible resource.
Therefore, in our system, we will not assume anything
about the resource usage. In control-theoretical terms, we
will model every possible difference between the nominal
resource usage and the effective one as a disturbance, and try
to reject these disturbances to obtain the desired behaviour. In
other words, we address here “resource-resource” problems,
i.e., those in which the distribution itself of the resource is
also the ultimate objective, as opposite to “resource-work”
ones, where the goal is to guarantee an effective use of the
resource (see the discussion on the matter in [8, Chap. 8]).

The general approach to feedback resource allocation is to
take an existing controller (scheduler, memory controller or
disk controller) and realise a form of adaptivity by changing
some of its parameters (the amount of memory allocated
to each task or the number of active memory areas per
application). Some contributions devise control strategies for
resource allocation starting from a fully functional system
and tweaking it to make it more robust to changes in the
operating conditions [1], [6], [9], [15]. This is for example
the case of adaptive web servers, where the percentage of
requests to be served is dynamically chosen based on the
load [17]. If one removes the admission controller, that
is allowing a certain percentage of requests to enter the
system and denying the access to some other requests, the
system will work exactly in the same way, but have a higher
probability of be overloaded and fail in serving the requests.

However, the main difference between this research and
the corpus of literature works is that here we design a
resource allocator exactly in the form of a controller. There
is no fully functional object to be augmented with control
strategies. If one removes the controller, the system simply
does not work. Our main objective is to achieve a certain
distribution of the resource, based on the applications’ needs
also in the presence of unmodeled dynamics. For example,
in the case of the CPU, this means that we want to maintain
the CPU distribution of three different tasks also when the
operating system is partially using the CPU for its own
purposes.

A. A model for resource consumption

The first step to build a resource allocator is to devise a
model of the tasks response to the amount of resource that
they receive. Since we want to abstract from the specific
characteristics of each task, the model is trivial, but captures
the phenomena of interest. At each controller intervention k,
a task i is given a burst of resource, denoted by bi(k). For the
CPU this value is often called bandwidth while for memory
it could be called pages. When its share of the resource is
consumed by the task, the resource is relieved and becomes
available for the other tasks that are waiting for it. Moreover,
if the task does not need the resource anymore, it can release
it voluntarily. If some other operation, for example the code
of a critical section, prevents the task from releasing the
resource, prolonging its consumption time.

As anticipated before, every behaviour that is unmodeled
is seen as a disturbance, δbi(k). Denoting by τt,i(k) the
amount of resource that is allocated to the task at the resource

allocator intervention k, the model for the i-th task can be
written as

τt,i(k) = bi(k−1)+δbi(k−1), (1)

where i varies in the interval 1, . . . ,N and N is the number
of tasks. It is necessary to clarify the role of τt,i(k), which
is the amount of time that the task had for its use of the
resource between the (k−1)-th and the k-th intervention of
the allocator — the (k−1)-th round of allocation. This means
that our control variable is the time allocated to the task and
we can measure the effective time that the application has
spent using the resource between two distinct control actions.
This time is not necessarily equal to the control variable due
to disturbances. We want the resource distribution to follow
some determined division among the running applications.

To extend the model to the entire task pool, we should
consider that every task receives a burst at the beginning of
the allocation round, leading to:

P :

 τττ t(k) = b(k−1)+δb(k−1)
τr(k) = ∑

N
i=1 τt,i(k)

τ(k) = τ(k−1)+ τr(k−1)
(2)

where τt is the vector of allocations, τr is the time between
two subsequent scheduler interventions, or round and τ is
the system time. We also want to constrain the time between
two subsequent allocator intervention to a specific value.

B. A control structure for resource consumption

Rr(z) α(k) Rt(z) P(z)

∑

τ◦r

+

bc

+

τττ◦t

+

b
+

δb
+ τττ t

−+−
τr

Fig. 1: Block diagram representing the proposed approach
for resource allocation.

We recall that our control system’ purpose is to select
b to enforce a specific distribution of the resource among
the tasks. We present one possible solution for the resource
allocation, that was devised in the context of task scheduling
but is actually more general and applies to other resources
as well. The control structure that we chose is shown in
Figure 1. Block P(z) represents the plant to be controlled,
or the task pool. Block Rt(z) is devoted to computing the
vector of task bursts b in such a way that the vector τττ t
of tasks’ time usages for the resource follow a set point τττ◦t .
This set point is obtained by partitioning the measured round
duration τr according to the (possibly time-varying) vector
α(k), the elements of which sum to one. An idle task can
be introduced to manage the case in which the total resource
requested is less than one.

The bursts are additively corrected by the burst correction
bc output by block Rr(z), so that τr follow its set point τ◦r .
This is important because if for example some task gets
blocked and stop consuming the resource, Rt(z) can still
keep the resource time usage for the others, but the round



duration set point is lost [7]. Note that the proposed discrete-
time control is single-rate, and the rate is dictated by the outer
level. The task allocator, therefore, performs its computations
once per round, which is somehow a peculiarity with respect
to the existing literature, where the allocator intervenes more
frequently and often unnecessarily. The proposed control
structure can effectively manage task scheduling when the
control blocks are very simple. We chose a diagonal integral
one for Rt(z) and a single input single output PI for Rr(z).
Simulations and executions on real hardware were discussed
extensively to testify the validity of this approach in the CPU
case [12].

However, one main issue has yet to be solved with respect
to the state of the art [7]. The scheme of Figure 1 is time-
varying, owing to the natural use of α(k) as a means to
govern the resource distribution, and a stability analysis
is in order. The primary contribution of this paper is to
prove the stability of the proposed scheme. Section III is
devoted to this matter. Another contribution of this paper is
to simplify the use of the proposed control strategy by system
administrators, that usually have little (if any) knowledge
on control theory. Even if the matter has not been stressed
before, this is really important in order for the contribution
to get accepted by the specific community that it addresses.
This is treated in Section IV.

III. STABILITY ANALYSIS

This section analyses the proposed allocation scheme as
for stability, accounting for its time-varying nature. Such an
analysis constitutes the main contribution of this paper. It is
also worth noticing that most of the addressed cases (think to
the CPU scheduling one as a representative example) exhibit
no or negligible parameter uncertainty, which allows – from a
practical standpoint – to avoid delving in complex robustness
discussions.

The general control structure to be analysed is shown in
Figure 2, where the controllers within the internal and the
external loop are represented by the MIMO block Ru(z)
and the SISO one Rs(z), respectively. The disturbance is not
shown since it is not relevant for the present analysis.

Rs(z) α(k) Ru(z) P(z)

∑

y◦s
+

us

+

y◦u y◦u
+

u yu

−+
ys

−

Fig. 2: Block diagram of the proposed control structure
in general, evidencing the controllers in the internal and
external loop.

Let us consider the N×N MIMO system with input y◦u and
output yu of Figure 2, and suppose that the process P(z) and
the regulator Ru(z) are diagonal, with identical elements. Let
then (Ap,Bp,Cp,0) and (Ar,Br,Cr,Dr) be realisations of the
(SISO) diagonal elements of the process and the regulator
respectively. Hence, the closed loop matrices (A,B,C,D) of
the system with input y◦u and output yu are block diagonal

with elements

A =

[
Ap−BpDrCp BpCR
−BrCp Ar

]
, B =

[
BpDr

Br

]
,

C =
[
Cp 0

]
, D = 0,

therefore A = diag(A,A . . .A). Also, suppose that each A is
Schur.

Let α(k) a time-varying vector of length N such that
∑i αi(k) = 1, ∀k. Thus the SISO system with input y◦u and
output ys with state space realisation (A,B,C,D) is obtained
as

A= A, B= Bα(k), C=
[
1 1 · · · 1

]
C, D= 0.

Finally, let consider the system with input us and output
ys, thus introducing a new positive feedback, yielding to the
state space realisation (As,Bs,Cs,0)

As = A+BC, Bs =B, Cs = C.

Recalling that the state space vector of the system has the
form

x =
[
xp,1 xr,1 · · · xp,N xr,N

]′
where, clearly, xp,i and xr,i are the states of the i-th process
and of its controller, we can introduce a state space transfor-
mation T such that the new state space is

ξ = T x =[
xp,1−

N

∑
i=2

xp,i xr,1−
N

∑
i=2

xr,i xp,2 xr,2 · · · xp,N xr,N

]′

and the resulting state space matrices are obtained as Ãs =
T−1AsT , B̃s = T−1Bs, C̃s = CsT . In particular, it is worth
evidencing that

Ãs =


A+BC 0 · · · · · · 0

BCα2(k) A 0 · · · 0
BCα3(k) 0 A · · · 0

...
...

...
. . .

...
BCαN(k) 0 · · · 0 A

 ,

where the eigenvalues of Ãs do not depend on α(k), and
therefore are fixed in time.

As a consequence, if Rs(z) stabilises A+BC, and recalling
that A is Schur, then the time variance induced by α(k)
does nothing but altering the inputs of asymptotically stable
systems that do not take part into the external loop.

Summarising, it was proven that the proposed control
structure can be safely used for resource allocation. Vector
α is used to govern the resource distribution via the internal
controller, and the set point y◦s to decide – via the external
controller – “how frequently” the allocator has to regain
control. No action on those two inputs can jeopardise the
control system stability.



IV. THE SYSTEM ADMINISTRATOR’S INTERFACE

Proving the stability of the closed-loop system ensures
that even a non-expert cannot alter the correct behaviour
of the controller, when choosing the parameters and the set
points of the resource allocator. This opens the possibility
of providing to system administrators a usable interface to
the scheme, without requiring them to deal with control
concepts.

In fact, system administrators are used to categorise the
tasks in batch or interactive, period or sporadic, preemptable
or non-preemptable and so on. In the computer science
domain, the problems on different task sets are often solved
independently and the solution that works for one type of
tasks does not cover the others. The presented framework
treats all task types the same way, i.e., with the same control
law. The distinction becomes evident only from how the
resources are assigned to those tasks, i.e., from parameters’
and set point profiles’ selection. Therefore, it is necessary to
ease the logic for said selection, to make it accessible also
to somebody that does not have a background in control
engineering. In the following, we suppose that α can be
varied freely, thus the analysis of Section III is a prerequisite.

To address the problem, we will here split it into three
different parts. First, one should select the controllers’ struc-
turing. Second, a convenient set point and α generation
mechanism needs devising. Last, the parametrisation of
the two entities just mentioned has to be addressed. In
the authors’ opinion, the aforementioned subproblems are
naturally attributed to the three involved professionals: the
control engineer, the computer engineer, and the system
administrator.

A. Control structuring

Intuitively, given the necessity of minimising the resource
allocation overhead, simple controllers should be selected for
the internal and external loops. Based on previous works,
there are some typical choices. The internal controller can
either be an integral or a deadbeat regulator, while the
external controller can be a PI, a pure proportional, or a
deadbeat one. Using integral and proportional blocks results
in the lowest orders, while deadbeat blocks may require more
stages, but allow to shape the set point responses. Attempts
were made also with model predictive controllers, but this
introduces a computational burden and should be used only
when strictly necessary [16].

B. Set point and α generation

With the introduced control structure, the choice of τ◦r
and α can enforce any requisite of fairness, timeliness and
so forth [11]. The computer engineer can in some sense “pre-
configure” a system for its administrator, reasoning on four
basic task types.

1) Tasks with periodic deadlines: Let Ti be the period
of a task, and Wi its workload in the period (i.e., every Ti
time units the task must receive the resource for Wi time
units). The accumulated resource time in the period needs
thus following the trapezoidal profile of Figure 3, the start
of which is triggered by a periodic interrupt, while the end
can be required by the task once its per-period workload

Wi

Ti(1−βi)

Ti

more time-critical

less time-critical
time

accumulated resource time set point

Fig. 3: Accumulated resource time set point for periodic
tasks.

is accomplished — all the major operating systems provide
primitives for such a signalling.

This means that at the beginning of each period the task
will be allotted a tentative α component, denoted by α̂i,
given by

α̂i(k) =
Wi

(1−βi)Tiτ◦r (k)
, 0≤ βi < 1, (3)

while the meaning of “tentative” has to do with preserving
the unity sum of α , and is explained later on. The same α̂i
will be reset to zero by the task itself, to which – correctly,
for the scheduler’s generality – any decision is devoted on
what to do if Ti expires before Wi is accomplished. Note
that α̂i remains constant unless τ◦r is changed while α̂i 6= 0,
which is correct. Note also that a βi close to one requests
the resource time “as soon as possible”, which diminishes
in general the probability of missing a deadline. Building on
such an idea, one can probably hope in the future to have
some tuning knob to pass with continuity to non real-time
through soft up to hard real-time constraints.

2) Tasks with a single deadline: Such tasks are managed
in the same way as those with periodic deadlines, except that
only one period, of length equal to the desired task duration,
is triggered at its arrival. Also the meaning of W and β are
the same.

3) Tasks without deadlines: This is the typical situation
for interactive tasks, such as desktop applications. However,
one can define for tasks without deadlines a real – i.e., not
integer nor quantised – priority range, say from zero (lowest)
to one (highest), and obtain the corresponding tentative α

elements as

α̂i(k) = αmin,i + pi(αmax,i−αmin,i), 0≤ pi ≤ 1, (4)

where pi is the mentioned “priority”, the quotes indicating
that its effect on the actually allotted resource time is
definitely more direct and interpretable than it would be if
the term was given the traditional meaning.

4) Event-triggered tasks: This is the case of many ser-
vices, think for example of the mouse driver with the CPU
resource. The idea is that when awakened the task gets a
certain tentative α element, which then decays to zero at a
given rate, i.e., as

α̂i(k) = α̂i(k−1) ·a−(k−k0,i)
i , 0 < ai < 1, (5)

and is reset to the initial value (α̂i0 in the following) when a
new awakening event is triggered, typically via an interrupt,
that simply has to reset k0,i to the current time index. Note
that this is the only case in which α̂i can in general undergo
variations over each round. If this is not acceptable for any



reason, one could for example allot a “small” fixed resource
share to the task, and consider it blocked when not awakened.

Once all the tentative components α̂i are available, α is
simply obtained by rescaling them (uniformly, as “relative
task importances” are already substantiated by the choices
of the sections above) so that the sum be one. In the case of
particularly critical periodic tasks a flag can be introduced to
prevent their components from being rescaled. The computer
engineer in charge of pre-configuring a system has essentially
to set limits on the admissible values for parameters αmin,i
and αmax,i and possibly narrow those for βi, pi and ai, either
system-wide or for some classes of tasks. Also, she has to
decide how many tasks can be excluded from rescaling, and
so forth. The idea is to set “safe” limits for the choices of the
system administrator, when necessary. The interesting feature
is that said limits can be clearly interpreted in terms of the
used control scheme.

C. Parameter setting
Parameter setting is the role of the system administrator,

and once confined as per the choices above, there should not
be the possibility of provoking undesired behaviours, while
a graceful degradation is expected (thanks to rescaling) in
the case of overloading. To further ease the administrator’s
work, the computer engineer could also prepare some pre-
defined parameter settings suitable for certain task types, and
by means of profiling, those settings could be refined on the
field. Here, the advantages of a control-theoretical design
should become evident.

V. EXPERIMENTAL EVALUATION

In this section, we simulate the resource allocation to show
how the allocator acts. The presented results are obtained
from a PC-based simulator of how the resource is distributed
in a microcontroller kernel, Miosix1. We chose to use the
simulator because it allows us to emulate the behavior of
a generic resource and is not limited to the CPU. Notice
that these simulations are very realistic, given the particular
nature of the problem and the almost absence of uncertainty
sources.

The internal and external controllers used in the example
are respectively of the I and PI type, expressed as

Ru(z) = diag
{{

0.5
z−1

}
i

}
, Rs(z) = 2.5

z−0.5
z−1

, (6)

and are tuned as described in [12].
We test the system with a task pool, the characteristics

of the tasks are summarised in Table I. The workload pa-
rameters represent how much resource time the applications
would need. There are tasks of all the four defined types: for
the two periodic ones the period, the workload and the value
of β are given; the two batch ones are specified in the same
way, except for the replacement of “period” with “duration”
and the presence of an arrival time; the three prioritised ones
are specified by the corresponding values of p; finally, the
two event-based ones have an initial resource share and a
decay rate as parameters, and are triggered at prespecified
times. During the simulation, some priority modifications are

1http://home.dei.polimi.it/leva/Miosix.html.

ID Periodic period workload β

1 Tpe1 50 0.5 0.5
2 Tpe2 180 0.8 0.2

Batch arrival workload duration β

3 Tba1 100 60 300 0.1
4 Tba2 150 70 400 0.1

Priority priority
5 Tpr1 0.1
6 Tpr2 if(τ < 250 ∧ τ > 375) 0.4, else 1.0
7 Tpr3 0.2

Ev-trigg in. share dec. rate trig. times
8 Teb1 0.02 0.6 10, 20, 100, 280, 300
9 Teb2 0.03 0.7 5, 15, 50, 80, 150, 400

TABLE I: Task pool for the simulation example.

impressed to show the system’s response. No other actions on
the pool are shown to avoid too confusing a presentation, and
since the purpose here is to show the effects of the proposed
parametrisation scheme, care is taken in this example to
avoid over-utilisation.

0 100 200 300 400 500

0.4

0.5

0.6

0.7

τ

R
ou

nd
du

ra
tio

n

τ◦r τr

Fig. 4: Round duration control.

0 100 200 300 400 500

0.5

1

τ

A
cc

um
ul

at
ed

re
so

ur
ce

tim
e Tpe1 Tpe2

Fig. 5: Accumulated resource time for periodic tasks.

Figures 4–6, with vertical axes graduated in time units,
report the results of a simulation run spanning 500 time units.
In detail, Figure 4 shows the round duration, that apparently
keeps its set point of 0.5 time units despite all the underlying
pool-generated events and the δb disturbance, chosen so as
to generate on average a 10% deviation of the actual from
the allotted resource use for all the tasks.

Figure 5 shows the accumulated resource times for the
periodic tasks, evidencing the effect of β . In this example
no task is excluded from α rescaling, whence the observed
(and desired if rescaling is not used) slope modifications.
Finally, Figure 6 reports the resource shares for all the tasks
in the pool, evidencing how the desired set points are met
and mutual influences are dealt with thanks to the control
scheme.

Summarising, the example evidenced that the proposed
control structure can be parametrised by a system adminis-
trator in a comprehensible manner, as shown in Table I. Other
phenomena, such as over-utilisation or other actions on the
pool, are dealt with correctly by the resource allocator —



0

0.05

0.1

Pe
ri

od
ic

τ◦t,1 τt,1

τ◦t,2 τt,2

0

0.1

0.2

0.3

0.4

B
at

ch

τ◦t,3 τt,3

τ◦t,4 τt,4

0

0.5

Pr
io

ri
tis

ed

τ◦t,5 τt,5 τ◦t,6
τt,6 τ◦t,7 τt,7

0 100 200 300 400 500
0

0.02

·10−2

τ

E
ve

nt
ba

se
d

τ◦t,8 τt,8

τ◦t,9 τt,9

Fig. 6: Resource distribution.

thanks to the stability condition.

VI. CONCLUSION

This work discussed the problem of computing systems
resource provisioning from a control-theoretical perspective.
Building on previous work, a schema for resource allocation
has been presented and the stability of the closed loop system
has been proved. The stability analysis of the time-varying
system is the most important contribution of this paper.

Another important point has been discussed: the parametri-
sation of the control scheme. In fact, it is often recognised
that devising a control solution would solve computing
systems problem. However, the lack of expertise in the
control system synthesis is one of the main factors preventing
these solutions from being effectively applied in real systems.
Simulation studies for the CPU allocation confirmed the
foreseen results. In future work, the same solution will be
implemented for other resources.

ACKNOWLEDGMENT

This work was partially supported by the Swedish Re-
search Council through the LCCC Linnaeus Center.

REFERENCES

[1] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a
reservation-based feedback scheduler. In Real-Time Systems Sympo-
sium, 2002. RTSS 2002. 23rd IEEE, pages 71–80, 2002.

[2] F. Harada, T. Ushio, and Y. Nakamoto. Adaptive resource allocation
control for fair qos management. Computers, IEEE Transactions on,
56(3):344–357, 2007.

[3] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury. Feedback Control
of Computing Systems. Wiley, 2004.

[4] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana. Self-optimizing
memory controllers: A reinforcement learning approach. In Pro-
ceedings of the 35th Annual International Symposium on Computer
Architecture, ISCA ’08, pages 39–50, Washington, DC, USA, 2008.
IEEE Computer Society.

[5] J. Kephart and D. Chess. The vision of autonomic computing.
Computer, 36(1):41 – 50, jan 2003.

[6] D. Lawrence, G. Jianwei, S. Mehta, and L. Welch. Adaptive scheduling
via feedback control for dynamic real-time systems. In Proceedings of
the IEEE International Conference on Performance, Computing, and
Communications, pages 373–378, 2001.

[7] A. Leva and M. Maggio. Feedback process scheduling with simple
discrete-time control structures. IET Control theory and applications,
4(11):2331–2342, 2010.

[8] A. Leva, M. Maggio, A. V. Papadopoulos, and F. Terraneo. Control-
based operating system design. Control Engineering Series. IET, Jun
2013.

[9] C. Lu, J. Stankovic, H. Sang, and G. Tao. Feedback control real-time
scheduling: Framework, modeling, and algorithms. Real-Time Syst.,
23(1/2):85–126, 2002.

[10] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feedback control real-
time scheduling: Framework, modeling, and algorithms. Real-Time
Syst., 23:85–126, July 2002.

[11] M. Maggio and A. Leva. A new perspective proposal for preemptive
feedback scheduling. International Journal of Innovative Computing,
Information and Control, 6(10):4363–4377, 2010.

[12] M. Maggio, F. Terraneo, and A. Leva. Task scheduling: a control-
theoretical viewpoint for a general and flexible solution. ACM
Transactions on Embedded Computing Systems, May 2012. Accepted
for publication.

[13] K. Mjelde. Fuzzy resource allocation. Fuzzy Sets and Systems,
19(3):239 – 250, 1986.

[14] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive control of virtualized resources
in utility computing environments. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007,
EuroSys ’07, pages 289–302, New York, NY, USA, 2007. ACM.

[15] L. Palopoli, L. Abeni, and G. Lipari. On the application of hybrid
control to cpu reservations. In Proceedings of the Hybrid systems
Computation and Control, 2003.

[16] A. V. Papadopoulos, M. Maggio, S. Negro, and A. Leva. Enhancing
feedback process scheduling via a predictive control approach. In
Proc. of the 18th IFAC World Congress, volume 18, pages 13522–
13527, 2011.

[17] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson. Design
and evaluation of load control in web server systems. In Proceedings of
the 2004 American Control Conference, volume 3, pages 1980–1985,
Boston, MA, June 2004. IEEE Control Systems Society.

[18] A. Sharifi, S. Srikantaiah, A. K. Mishra, M. Kandemir, and C. R.
Das. Mete: meeting end-to-end qos in multicores through system-wide
resource management. In Proceedings of the ACM SIGMETRICS joint
international conference on Measurement and modeling of computer
systems, pages 13–24, New York, NY, USA, 2011. ACM.

[19] I. Song, S. Kim, and F. Karray. Stability analysis of feedback
controlled reservation-based cpu scheduler. In Proceedings of the
1st International ECRTS Workshop on Real-Time and Control, pages
1880–1885, 2005.

[20] J. Stankovic, C. Lu, S. Son, and G. Tao. The case for feedback control
real-time scheduling. In Real-Time Systems, 1999. Proceedings of the
11th Euromicro Conference on, pages 11 –20, 1999.

[21] D. S. Swaminathan, D. R. Sahoo, S. Swaminathan, R. A-omari, M. V.
Salapaka, G. Manimaran, and A. K. Somani. Feedback control for
real-time scheduling. In In Proc. American Controls Conference, pages
1254–1259, 2002.


