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On the use of feedback control

in the design of computing system components

Martina Maggio, Alessandro Vittorio Papadopoulos, Alberto Leva

ABSTRACT

Feedback controllers are typically applied to computing systems by
acting on some quantities (“tunable parameters” in the computer science
lexicon, e.g., a packet drop rate) to attain some goal (e.g., a required bandwidth
allocation). In other words, control loops are closed around the computing
system. In the authors’ opinion, this is definitely a partial use of control. Many
critical parts of computing systems should not be controlled, but rather re-
designed in the form of controllers. This paper formalises the statement above
and illustrates some results, including application examples, to demonstrate the
advantages of such a novel approach, and stimulate research on the matter.

Key Words: computing systems; discrete-time systems; PID control;
predictive control.

I. Introduction

In these years, much attention is being devoted
to “self-adaptive” [18] and “autonomic” [8] computing
systems. Adopting the computer science jargon, such
systems modify themselves so as to better respond to
varying operating condition, such as workload [17],
network throughput [19], services to offer [7], and so
forth. The subject is apparently of interest also for
the control community, where many of the involved
adaptations have been formulated as modifications of
tunable system parameters based on the desired and
actual system behaviour—that is, feedback control
problems [1] for which dynamic models in the system-
theoretical sense can be applied [3].

However, observing the control literature on
computing systems to date, a peculiar fact emerges.
Typically, the controlled object is not the phenomenon
of interest alone. Said phenomenon is often coupled
with parts of the computing system that already act

Manuscript received mm-dd-yyyy
The authors are with the Dipartimento di

Elettronica e Informazione, Politecnico di Milano,
Via Ponzio 34/5, 20133 Milano, Italy, e-mail
{maggio,papadopoulos,leva}@elet.polimi.it;
M. Maggio and A.V. Papadopoulos are PhD students at the
Dipartimento di Elettronica e Informazione.

on it, and often attempt to solve – more or less
empirically – some control-like problem. This system
composed by phenomenon and control is usually
taken as is and some loops are conveniently closed
around it. To give a simple example, in several works
the behaviour of a multitasking system is adjusted
by adapting the parameters of an already installed
scheduler, with feedback controllers [12]. In such cases,
the phenomenon of interest is the behaviour of the
scheduled tasks, but the loop is closed around that
phenomenon plus the existing scheduler [13].

The excellent review [6], and more recent works
such as [9, 18], confirm that the above way of using
feedback control in computing systems – the “classical”
one from now on – is definitely dominant. Nonetheless,
in the opinion of the authors, such modus operandi has a
very significant drawback. Typically, in fact, those parts
of the system that de facto were already controlling the
phenomenon of interest prior to the closure of the new
feedback loop, were not conceived as dynamic systems,
but directly as algorithms. Since the new loop has to
include said parts, complex modelling paradigms most
often come into play, and the overall design becomes
difficult to carry out and assess.

In the long-term research to which this work
belongs, a radically different approach is proposed:
instead of taking the computing system as is and just
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closing loops around it, re-design parts of that system in
the form of one or more controllers, i.e., with system-
theoretical methods. This requires to first evidence
the phenomenon to be controlled (e.g., the concurrent
execution of a pool of tasks) and describe it in a
system-theoretical framework, obtaining a model of the
controlled system in open loop (the “plant” from now
on). Note that such an object is hardly ever mentioned
in the classical literature.

Once the core phenomenon is isolated, there is
little or no need to include in the model any entity
that is not keen to be described by a dynamic system
(the following examples will clarify this). Hence,
simple modelling paradigms can be used, allowing for
powerful synthesis and analysis tools.

Having characterised the plant, a controller
(model) is then designed, generally with standard
methods—and not surprisingly, leading to simpler
and computationally lighter solutions than with the
classical approach. The control algorithm finally arises
in a natural manner, as the implementation of the so
obtained controller model.

This paper, extending the results of [14, 16], first
illustrates the new proposed way of using control in
computing systems, by applying it to task scheduling.
Modelling the core phenomenon leads to conclude
that all the major existing scheduling policies are
particular cases of a single discrete-time dynamic
system. The adoption of such a unitary framework
makes it straightforward to apply solid and simple
control techniques, namely PID and predictive control,
and to formally assess the results. Some words are also
spent on the generalisation of the approach and on its
application to other problems, thereby sketching out
future research.

II. Motivation and novelty

A representative example of the classical approach
can be found in [6]. The typical control scheme
proposed therein looks like figure 1a. Taking this
viewpoint, the “computing system” block represents an
already functional object, and the controller just tunes
some of its parameters. However, two are the main
problems with this approach. One is that modelling the
computing system taken as is is complex. The other is
that the tunable parameters are not necessarily the best
inputs to control the phenomenon of interest. Further,
when dealing with modelling and control design, the
scheme in figure 1a must be translated into something
like figure 1b. This is far from trivial, and typically goes
through black box identification or similar techniques.

Controller Computing 
system

Response 
estimator

Reference 
response

Actual 
response

Estimated 
response

Tunable 
parameters

Measurements

(a)

R(z) P (z)
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-
+

(b)

Figure 1. Typical control schemes of the classical approach.

On the other hand, the authors’ viewpoint is that if
one implements part of a system (as software) and then
for its control needs to identify a black box model for
it, something must be wrong. The approach used here
in fact does not start from a functional system, but only
from the physical phenomena that decide its behaviour.
The result is a system part of which is a controller, or
in other words, where removing the controller would
not result in a still functional system. The approach
strength comes from observing that in several cases
(scheduling included) modelling the core phenomena
only is extremely simple.

As a result, with this approach, the transition from
figure 1a to figure 1b is totally straightforward, or
better, the models of the controlled and the control
system already start out in a form compatible with
figure 1b. The advantages in terms of clarity and
analysis possibilities should be apparent, and are now
shown by addressing the scheduling problem.

III. A preemptive scheduler in the form of a
feedback controller

3.1. Modelling the core phenomenon to control

Consider a single-processor multitasking system
with a preemptive scheduler. Let N be the number
of tasks to schedule, assumed constant (task arrival
and termination is simply a matter of reinitialisation).
Define the “round” as the time between two subsequent
scheduler interventions. In the following, vector τp(k)∈
ℜN represents the CPU times actually allocated to the
tasks in the k-th scheduling round, and τr(k) ∈ ℜ is
the actual time duration of the k-th round; ρp(k) ∈ ℜN
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contains the “times to completion” (i.e., the remaining
CPU time needed by the task to end its job) at the
beginning of the k-th round for the tasks that have
a duration assigned (elements corresponding to tasks
without an assigned duration will be +∞), while b(k) ∈
ℜn(k) and δb(k) ∈ ℜn(k) contain the “bursts”, i.e., the
CPU times allotted by the scheduler to the tasks at
the beginning of the k-th round, and the disturbances
possibly acting on the scheduling action during the k-
th round (for example because some tasks release the
CPU before their bursts elapse, because of an interrupt
management, and so forth); n(k) (1 ≤ n(k) ≤ N ∀k)
is the number of tasks that the scheduler considers
at each round, being it constant and equal to one in
the traditional policies. Denote by t the total time
actually elapsed from the system initialisation. With
the definitions above, a simple plant model, sufficient
however for the purpose of this work, is

τp(k) = Sσ b(k−1)+δb(k−1)
τr(k) = r1τp(k−1)
ρp(k) = max

(
ρp(k−1)−Sσ b(k−1)

−δb(k−1), 0
)

t(k) = t(k−1)+ τr(k)

(1)

where r1 is a row vector of length N with unit elements,
and Sσ ∈ Σ a N× n(k) switching matrix. The elements
of Sσ are zero or one, and each column contains at
most one element equal to one. Matrix Sσ therefore
determines which tasks are considered in the particular
round at hand, to the advantage of generality (and
possibly for multiprocessor extensions). Notice that,
since n(k) is bounded, set Σ is finite for any N.

Moreover, the τp, τr and t equations in (1) form
a linear, switching discrete-time dynamic system, apart
from the obvious input saturation constraint given
by the impossibility of negative bursts and durations.
Such control saturations are managed with standard
antiwindup. The ρp equation is conversely nonlinear.
However, given the role of disturbances in the adopted
framework, a task that terminates before exhausting its
burst is simply modelled with a negative disturbance
element on that burst, and then removed from the pool.
Since the relevant fact is here that disturbances are
exogenous to the scheduler only, one can therefore
disregard the nonlinear equation as not relevant for
the problem and safely treat the model as the linear
switching one

τp(k) = Sσ b(k−1)+δb(k−1)
τr(k) = r1τp(k−1)
t(k) = t(k−1)+ τr(k)

ρp(k) = ρp(k−1)−Sσ b(k−1)−δb(k−1)
(2)

3.2. Controlling the core phenomenon

Figure 2. The proposed approach applied to scheduling.

In figure 2 a general scheme is presented for the
proposed approach applied to scheduling. The plant (or
core phenomenon) is composed of just the task pool
and the disturbances possibly acting on it, while the
controller is naturally partitioned into three entities.
The first one is a block that selects the switching
signal σ(k), thus yielding Sσ (k). The second one
is a block that computes the burst vector b(k). The
third one is the activation logic block, that determines
when the scheduler has to intervene according to the
control policy. Notice that in the most general case
the activation logic component receives as inputs the
signals b(k) and Sσ (k) computed by the each other
block, as well as measures of the plant output and
of the current cost function f , that can be arbitrarily
chosen. For example, one could decide to maintain the
bursts constants for more than one round, or have the
scheduler act only when some threshold is exceeded
by some measured quantity related to the system
performance (i.e., memory usage), and so on. In this
work the activation logic is not addressed, and was
mentioned here only to stress the generality of the used
formalism. Notice however that the proposed formalism
makes that logic transparent to the controller design.

Setting up the scheme of figure 2, a relevant
merit of the proposed approach is revealed. Modelling
the core phenomenon naturally leads to evidence –
as its states (and outputs) – the basic elements for
virtually any performance metrics one may conceive,
thus to formulate specifications on those metrics as
Set Point (SP) following requests. In fact, any possible
scheduling objective can be formulated as a cost
function and/or a set of input and/or state constraints
for (2). In other words, any objective can be expressed
by combining a desired behaviour τ◦p(k), a set of
input constraints in the form b(k) ∈ B(k), and a cost
function in the form J(φ ,τK

p ,b
K ,ρK

p ), where τK
p :=

[τp(0)τp(1) . . . τp(K)], bK := [b(0)b(1) . . . b(K)],
ρK

p := [ρp(0)ρp(1) . . . ρp(K)], and φ is a convenient
vector of parameters. This is another significant
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novelty with respect to the mainstream computer
science literature, that concentrates mainly (not to
say exclusively) on off-line schedulability analysis,
especially for real-time systems, with the aim of
verifying the attainability of an objective; the problem
of driving the on-line behaviour of the scheduler is
seldom addressed.

Another important remark is that the formalism
can describe virtually any existing scheduling policy,
by merely imposing conditions on n and/or Sσ . For
example

• n = 1 and a N-periodic Sσ with

Sσ (k) 6= Sσ (k−1), 2≤ k mod N (3)

produce all the possible Round Robin (RR)
policies having the (scalar) b(k) as the only
control input, and obviously the pure round robin
if b(k) is kept constant,

• generalisations of the RR policy are obtained if
the period of Sσ is greater than N, and (3) is
obviously released,

• n = 1 and a Sσ chosen so as to assign the CPU
to the task with the minimum row index and a ρp
greater than zero produces the First Come First
Served (FCFS) policy,

• n = 1 and a Sσ selecting the task with the
minimum ρp yields the Shortest Remaining Time
First (SRTF) policy,

• n = 1 and a Sσ that switches according to the
increasing order of the initial ρp vector produces
the Shortest Job First (SJF) policy.

Figure 3. The synthesised “scheduler as controller” scheme.

However, the main interest of the proposed
approach is that it allows to devise new policies in a
system-theoretical manner. A quite general way to do
so leads to the cascade control system of figure 3, where
τ◦r is the required scheduling round duration, and

θ
◦
p ∈ℜ

N , θ
◦
p,i ≥ 0,

N

∑
i=1

θ
◦
p,i = 1 (4)

is the vector containing the required CPU time
fractions to be allotted to each task. The Rp regulator
aims at achieving said CPU time distribution within
the round, while the Rr regulator leads the system
to attain the desired round duration. As for the
control specifications’ interpretation, Rp takes care of
distributing the CPU for fairness, or to have each task
accumulate enough time to accomplish its workload
within prescribed deadlines, or any combination hereof.
At the same time, Rr makes the scheduler regain control
as frequently as desired, thereby providing a prescribed
degree of system responsiveness.

3.3. Applying standard control techniques

This section shows how the scheme of figure 3,
and more in general the proposed approach, are easily
turned into functional solutions by bringing in well
assessed control design methods. Tests and discussions
follow in the next section.

3.3.1. PI control

By choosing Rp as a diagonal integral regulator
with gain kpi, one makes the closed-loop system
denoted by CL1 in figure 3 a diagonal one the
eigenvalues of which are the pair 0.5∓

√
0.25− kpi,

with multiplicity N. If τ◦p were chosen as θ ◦pτ◦r , then
CL1 would control both the CPU distribution and the
round duration, but there would be two problems. First,
the dynamics of those two controls would be ruled by
the same eigenvalues, which can be inadequate in some
cases. For example, one may want the CPU distribution
to move smoothly from one situation to another, but
the round duration to respond very quickly to its SP.
Second, and more serious, should some task be blocked,
the round duration SP could not be attained.

Consider therefore the system denoted by S2 in
figure 3. With the chosen Rp, its eigenvalues are 0 and 1,
with multiplicity 1 each, and the pair 0.5∓

√
0.25− kpi,

with multiplicity N − 1. Notice that said eigenvalues
do not depend on θ ◦p . The single-input, single-output
system with input bc and output τr seen by Rr in figure
3 has thus the transfer function

Tr(z)
Bc(z)

=
kpi

z(z−1)
. (5)

Coming to Rr(z), its role is to introduce an
additive correction bc (named “burst correction” for
apparent reasons) to the bursts computed by Rp. The
simplest idea is to choose Rr(z) as a purely proportional
controller, i.e., Rr(z) = krp. In this case the eigenvalues
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of system CL2 in figure 3 are those of S2 with pair (0,1)
replaced by 0.5∓

√
0.25− kpikrp. This choice will be

termed from now on “I+P”.
In the case of a constant required CPU distribution,

the I+P scheme can assign the dynamics of τp and τr
in a (partially) independent manner. If, conversely, a
variable CPU distribution is to be considered, the same
scheme can be viewed as a linear switching system
with switch signal θ ◦p . However, its eigenvalues do
not depend on the switching signal, and in force of
well known results, see e.g. [4], there surely exists a
finite dwell time ensuring the exponential stability of
the scheme as switching system. Details on the matter
would stray from this work, but still notice the analysis
possibilities yielded by the proposed approach. The
interested reader can refer to works such as [5, 20].

The I+P is computationally very light, and with it
the closed-loop transfer function from τ◦r to τr is

Tr(z)
T ◦r (z)

=
kpikrp

z2− z+ kpikrp
(6)

thus allowing for a simple choice of the parameters kpi
and krp. The (only) drawback that the round duration
control is lost if a task stays blocked. If one cannot
guarantee that no persistent task blockings arise, it is
advisable to select for Rr a PI structure, i.e., Rr(z) =
krr(z−zrr)/(z−1), leading to what in the following will
be termed “I+PI”. In this case the 2N+1 eigenvalues of
CL2 have a long expression omitted for brevity, but still
do not depend on the switching signal θ ◦p . Hence, the
same stability considerations above apply. With I+PI,
the closed-loop transfer function from τ◦r to τr is

Tr(z)
T ◦r (z)

=
kpikrr(z− zrr)

z3−2z2 +(1+ kpikrr)z− kpikrrzrr
(7)

and the choice of the parameters (kpi, krr, and zrr) is
just slightly more articulated than it is with I+P, while
also the computational burden is only a bit higher. A
discussion on the time complexity of policies like those
introduced, in comparison with more traditional ones,
can be found in [11].

3.3.2. Predictive control

In this section, Rr in figure 3 is replaced by a RHPC
(Receding Horizon Predictive Controller), while Rp is
maintained. In figure 3 with the inner loops closed. If all
the I gains are equal and no task is blocked, the transfer
function from Bc(z) to Tr(z) is given by (5). Suppose
now that said gains are not equal anymore: expressing
the i-th gain as βikpi, and representing a blocked task

by zeroing its gain – i.e., replacing the first equation of
(2) with τp(k) = Γb(k− 1) where Γ := diag{γi} is a
matrix with one or zero diagonal elements (zero means
a blocked task) – the same transfer function becomes

Tr(z)
Bc(z)

=
kpi

z(z−1)
∆N(z)
∆D(z)

(8)

where ∆N(z) and ∆D(z) are polynomials in z of degree
N, the expression of which is lengthy and thus omitted.
Suffice to say that ∆N(z)/∆D(z) can alter the dynamics
of (8) significantly with respect to (5). Suppose then
to select as Rp a diagonal integral regulator with
different gains expressed for convenience as βikpi,
which corresponds in the state-space to

ARp =CRp = IN×N
BRp = kpi[β1 β2 . . . βN ]IN×N
DRp = 0N×N

(9)

where IN×N and 0N×N are respectively the identity and
the zero matrix of dimensions N ×N. Introducing the
information of blocked tasks, the system denoted in
figure 3 by S2 has the switching dynamic matrix

AS2 =

[
0N×N BΓCRp

BRp(θ
◦
pr1− IN×N) ARp

]
(10)

where

BΓ = γIN×N = diag{γ1,γ2, · · · ,γN} (11)

and γ j = 1 if the task is active and γ j = 0 if the task is
blocked (for example waiting for a resource to be freed).
Based on the state-space model just sketched, a simple
RHPC control law can be designed as

bc(k) = bc(k−1)+∆bc(k) (12)

where ∆bc(k) is computed as

∆bc =

Nc︷ ︸︸ ︷
[1 0 . . . 0](Φ′Φ+ R̄)−1

Φ
′ (T̄ ◦r τ

◦
r (k)−Fx(k))

(13)
where Nc is the control horizon, and Φ and F depend
on the model matrices in a well established manner, see
e.g. [2], R̄ being a diagonal matrix in the form that R̄ =
wINc×Nc(w ≥ 0) where w is used as a tuning parameter
for the desired closed-loop performance. Finally, T̄ ◦r
is an all-ones column vector of length Np (prediction
horizon). Of course, in the case of “symmetric desires”,
where the integral gains are equal, and if no information
about the blocked tasks is available (or equivalently,
the tasks are always considered not to be blocked), the
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resulting SISO system with input bc and output τr has
the transfer function (5), and it can be verified that the
so obtained control is equivalent to I+P.

Far more interesting are the additional possibilities
of the RHPC, in the case of “asymmetric” desires on
the scheduled tasks. Tasks running on a generic system
have in fact very different purposes, requirements, and
behaviours. For example, in the mainstream computer
science literature, they may be classified as “I/O-bound”
or “CPU-bound”. The former type makes heavy use
of I/O devices and spends much time waiting for I/O
operations to complete; the latter type are number-
crunching applications that require a lot of CPU
time. Another classification distinguishes three classes
of tasks: the interactive ones (tasks which interact
constantly with their users, and therefore spend a lot
of time waiting for key-presses and mouse operations),
batch ones (tasks which do not need user interaction,
and hence often run in the background) and real-time
tasks (tasks which should never be blocked by lower-
priority tasks, have a short response time and, most
important, exhibit for such response as low a variance
as possible). Whatever is the case, different kind of
tasks which must run on the same computing system
are treated as different entities. Again, this shows that
the main advantage of the proposed “fully control
theoretical” standpoint, is that such a classification does
not lead to different scheduling structures, but only to
particular cases of a single one.

IV. Examples

4.1. I+P and I+PI

This section presents some results with I+P and
I+PI, and different parameter choices. The applied
stimuli are (a) some modifications of the required
CPU distribution, to show that the basic goal of the
scheduler is attained, (b) some modifications to the pool
of tasks, to prove that re-initialising the controller is
straightforward, (c) some task blockings, to verify the
correct treatment of that case by the I+PI solution, and
(d) some modifications of the desired round duration, to
illustrate that the system responsiveness can actually be
changed on-line.

Both I+P and I+PI require the specification of kpi.
The simplest and somehow “standard” choice is to take
kpi = 0.25, which sets the eigenvalues of CL2 in figure
3 to be 0, 1 (with multiplicity 1 each) and 0.5 (with
multiplicity 2N− 2). This will be the choice in all the
tests that follow. With I+P, the only further parameter
to set is krp. Again, one can select a value based on

Figure 4. Test results with I+P (a,b) and I+PI (c,d) control.

the position of the eigenvalues of CL2, and along this
reasoning another “standard” choice can be krp = 1.

Figure 4 reports the round duration τr versus its
SP τ◦r and the additive correction bc exerted by Rr with
I+P (a) and I+PI (c), and the tasks’ CPU use τp versus
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their SP, again with I+P (b) and I+PI (d). The abscissæ
axes are graduated in time units (not rounds), which
by the way allows to see that in all the examples the
same number of rounds actually lasts (more or less) the
same time. The test also comprises some task blockings.
More precisely, task T2 is blocked from round 30 to
round 100, while between rounds 2100 and 2450 a
blocking occurs for T3, T6, and T8. This is quite severe
a perturbation, owing to the long blocking durations.
Apparently I+P works satisfactorily, but in the case of
(persistent enough) blockings is not capable of attaining
the required round duration. On the contrary, I+PI
manages blockings correctly.

One final consideration is useful. In the main-
stream scheduling literature, it is often claimed that
policies should be adaptive, which is obtained by
changing the parameters of some (feedback) control
law. In this work, control parameters are set on more a
model-free basis, in fact totally model-free with I+P(I),
and never changed. This permits to “tune once and then
touch only SPs”, which is apparently in favour of a
system-theoretical view on the problem.

4.2. RHPC

In the previous section, a symmetric internal
loop CL1 was considered (see figure 3), making the
assumption that all the tasks can be treated in the same
manner. A more general approach is to use different
weights for the different tasks’ I controllers in the
internal loop, in order to distinguish the low-priority
tasks from the high-priority ones by means of lower or
higher gains respectively, leading to different response
times.

The I+PI approach can still lead to good results,
from the above point of view, as exemplified in figure
5, top, that is organised in the same way as plots
(a,c) in figure 4. However, when the internal loop has
different regulators its design is not so simple as it
is in the symmetric case, and in particular, it is not
independent of θ ◦p anymore. With the RHPC it is on the
contrary quite straightforward to design the controller
by resorting to (10) and merely releasing the symmetry
assumption. Analysing the corresponding plots of figure
5, bottom, one can see how the predictive approach
leads to substantially analogous results with respect to
I+PI, although its design is simpler.

Both with the PI and with the RHPC, we have
reached the goal of rejecting such disturbances and of
following the SP signal. However, there is an open
actuation problem: what happens to the burst assigned
to each task when one or more tasks are blocked? How

Figure 5. I+PI (a) versus RHPC (b) with different gains in the internal
loop: both plots are organised as figure 4(a,c).

should the actuator distribute the CPU time among the
tasks within the round?

With I+PI, there are two main solutions of this
actuation problem. The first solution is to maintain the
round duration constant, as if all tasks were scheduled,
and the time that should have been allotted to the
blocked tasks were considered “idle time”. This idea
implies an action on the actuators, not on the controller,
in that if a task returns the CPU before the expiration
of its burst, the system (more precisely, its actuating
part) just has to wait till the allocated burst is exhausted.
The second solution is to re-distribute the time of the
round duration among the active non blocked tasks. As
in the first case, the round duration remains constant,
but the percentage of CPU time of each task changes.
The use of the RHPC implies new possibilities in this
panorama. For instance, one can open the external loop,
releasing the round duration control, which may change
at each scheduling round. The round duration becomes
the sum of the bursts assigned to the tasks at the k-th
round, except that assigned to the blocked tasks. The
information about blocked tasks at the last step can be
used by RHPC to predict the output.

This solution is much better than those offered by
the simple PI control structure. For example, in the case
of a CPU for a desktop PC, it may not be so dramatic
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if the CPU is idle because of a blocked task, but in
the case of a web server or a router, where the waste
of CPU time is a greater damage, it would be better
to use all the available CPU time or bandwidth, or, in
general, all the available resources. Also, with RHPC,
it is reasonably simple to account for task blockings by
simply having them detected by the operating system
(details on that would stray from this work but pose non
serious technical problems), and change the predictive
model used in the controller by acting on (11). The so
obtained results are shown in figure 6.

Figure 6. Results with RHPC in the presence of task blockings: plots
(a) and (b) are respectively organised as figure 4(a,b).

4.3. Discussion

Along the proposed approach, two well established
control techniques were applied to task scheduling,
in the presence of “symmetric” and “asymmetric”
desires, and possible task blockings. With PI-based
control, namely I+PI, the blocked tasks management
corresponds to the switching of the system, and does
not impact on the round duration which remains the
same, while the CPU time assigned to each task may
remain the same (with some idle time corresponding to
the blocked tasks) or may be re-distributed among non
blocked tasks (increasing each CPU time percentage). A
predictive control approach can lead to better solutions

for the blocking tasks problem. Moreover, I+PI is not
scalable, in the sense that if we decide to use different
weights on each computed error, the model becomes
much more complicated and it is no longer reducible to
a second order model, i.e., denoting by N the number of
the running tasks, in the worst case (a different weight
for each task) the model becomes of order 2N. Thus, in
this case, it is convenient to use a more complex control
technique, which allows to specify different weights,
with the same computational complexity. To summarise
the reported comparison of I+PI and RHPC, one can
state that the former is tendentiously simpler to set up
but less scalable. As such, I+PI is a good solution for
“symmetric” problems, i.e., where the error weights
can be taken equal. On the other hand, in situations
characterised by asymmetry on the desires, it is more
convenient to use predictive schemes such as the RHPC,
that have greater computational complexity, but succeed
in a wider variety of situations.

Comparative experiments were also conducted
with the Hartstone PH (Periodic Processes, Harmonic
Frequencies) series benchmark [21], the rationale of
which is to increase the load of a system until a task
deadline miss is observed. Each of the four benchmark
stresses the system in different ways, see [21] for full
details. Table 1 shows the number of iterations (i.e.,
system load increases) before the first miss (the higher,
the better). Also, the number of context switches in the
test iteration before that with the first miss is shown in
parentheses. The I+PI either achieves better results with
respect to the RR, or comparable ones with less context
switches. This test is conceived for EDF to perform
better than every other algorithm (since the system is
not overloaded), therefore EDF data are reported as the
upper bound. Recall however that EDF inherently relies
on the concept of task deadline, thus it provides an
upper performance bound only for a schedulable pool
of periodic tasks (as the Hartstone benchmark). The
proposed approach is conversely general, hence suitable
for a pool composed of tasks of any type. Moreover, as
shown e.g. in [15] and contrary to EDF, it can also cope
successfully with (transient) CPU over-utilisation.

V. The proposed approach in general

The scheduling treatise shown so far is just an
example of what can be done if one accepts to somehow
reverse the mainstream perspective on the use of
control techniques in computing systems, i.e., to design
systems as controllers instead of controlling systems
designed as algorithms. Of course no claim is here
made that the proposed models can represent computing
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Benchmark No. I II III IV

Po
lic

y EDF 31 (10785) 16 (3487) 8 (703) 8 (959)
RR 6 (2705) 15 (11051) 4 (1858) 7 (4364)
I+PI 27 (193109) 15 (10835) 8 (6270) 8 (8287)

Table 1. Hartstone PH series benchmark results with different scheduling policies (Earliest Deadline First, Round Robin, and I+PI).

systems in general, but several significant problems in
that domain can be addressed. Hence, in the authors’
opinion, said perspective reversal opens a wealth of
possibilities. To sketch out the panorama, it is useful to
abstract the general key facts of the proposed approach.
First, for each system adaptation capability (in the
computer science meaning) a controller is designed,
and for each control design, care is taken to isolate
the core phenomenon, accepting to undergo some plant
re-design. Then, the adopted modelling formalism is
confined to discrete-time dynamic systems. Finally, the
time index counts the interventions of the controller,
i.e., the obtained controls are discrete-time but not
sampled-signals ones. If the specifications include time-
related quantities, they are treated as state variables (see
e.g. τp and τr in this work).

Three other characteristics of computing systems
make the proposed approach particularly effective.
First, variables are often measured without (or with
negligible) errors, which is far from true in virtually
any other case. Here too, the approach naturally leads
to model uncontrollable actions on the system as
disturbances—an attitude that the reported examples
have shown to be effective in practice. Second,
when two or more controls interact, this almost
invariantly happens on a time scale that is far slower
than that of all those controls, which allows to
address the individual adaptation functionalities with
the reasonable certainty that assembling them together
in essentially a decentralised manner will lead to a
functional system. Third, the task variabilities typically
encountered are either very slow, or abrupt but very
sporadic (like e.g. a drop in a server reliability),
permitting the successful use of quite simple adaptive
techniques.

Finally, the proposed approach offers different
potentialities if compared to classical techniques
adopted in the computer science community [10]. Not
only static properties on the system (typical of the
computer science analysis), but also dynamic ones
(typical of the control theory domain) can be formally
proven, e.g. settling time, disturbance rejection, proof
of stability, and so on. Apparently enough, doing so
improve the performance of the controlled system since
those aspects are taken into account yet in the design

phase of the controller (in this case the scheduler in
an Operating System). This was not possible when the
scheduler was designed directly as an algorithm.

VI. Conclusions and future work

The main proposal of the research to which this
paper belongs is to employ control-theoretical methods
and tools not to control, but to design computing system
components. A representative example of the approach
was here presented, namely the “design as a controller”
– i.e., the design using system theoretic methods – of
a preemptive scheduler for a uniprocessor multitasking
system, with two different control techniques applied to
the same general scheme, and well qualified so that the
one best suited for the problem at hand can be selected.
The approach advantages were evidenced in terms
of controllability and interpretation of the involved
quantities and parameters. Moreover, it was pointed out
that when the problem is formulated on an equation-
based model for which a controller is designed, the
resulting system can be analysed in terms of standard
indicators like steady-state error and settling time, to
the advantage of a well grounded assessment without
the need for extensive testing.

The presented research opens more than one future
perspective. Sticking to scheduling, for example, very
interactive tasks can produce and receive a lot of
interrupts. Another scheduling level could be added
to better manage such situations. Also, extensions to
multicore environments can be envisaged. A solution
may select the core devoted to the execution of
each tasks and run a controller per core; however,
one could also aim at balancing the core workloads.
Another interesting topic is the definition of SP
profiles. If information about the task pool is available,
such as deadlines or expected resource usages, these
information could be exploited for SP generation. For
example, ramp-like SPs could be generated for the
accumulated CPU time, where the ramp slope for each
task depends on its importance. Also, one can introduce
different metrics, for example filtering or averaging
the affected quantities (such as the CPU distribution
“fairness”) over conveniently chosen time horizons, and
so forth.
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Finally, the relationship between the performance
indices derived from the computing system domain
and the one coming from the control-theoretical one
are of interest. In the former case, for example, a
web server is evaluated in terms of QoS indicators.
In the latter one, instead, a controller is usually
evaluated in terms of stability, accuracy (steady-state
error) and transient performance (settling time and
overshooting). The relationship between these two
approaches deserves further investigations. On a similar
front, since “redesigning as controllers” is powerful
but may impact system design significantly, it will be
necessary to study how to port “control theoretical”
solutions onto systems that were conceived and are
organised in hardly compatible a way. For example, the
memory space of a task in a priority-based scheduler
holds a lot of data that are useless for I+PI. It is however
unrealistic that the API exposed by the scheduler
requires application designers to significantly modify
their code, whence the necessity for a number of
software engineering studies in coordination with the
addressed system-theoretical issues.
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