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Abstract: Modern technologies allow to create a networked control system with off-the-shelf mobile
devices. As such, there is the possibility of having the role of who offers and who uses a “remote”
laboratory played by the same people. Extending recently published ideas, the paper presents a first
nucleus of functionalities allowing one to create process simulators and controllers which run on a
mobile application, and then share them with others. Some words are also spent on some of the
possibilities opened by the proposal, sketching out some interesting didactic activities to propose to
the students.
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1. INTRODUCTION AND MOTIVATION

Remote laboratories for control education have been receiving
a lot of attention in the last years, essentially as a viable
and effective means to have students interact with physical
experiments irrespective of their location, to share experiments
among teaching and research institutions, and so forth, see
for example Dormido et al. (2008) and the comprehensive
collection presented in Gomes and Garcı́a-Zubı́a (2007).

As a result of such a dominant perspective, a correspondingly
dominant idea can be observed in the literature – of course,
with some exceptions – on the structure, or in some sense the
idea itself of “remote control laboratory”: a server hosts some
experiment, one client at a time allows a person or a group to
act on that experiment, and possibly other clients allow other
persons or groups to watch; examples are found in Murtra et al.
(2007); Leva and Donida (2008a); Vicente et al. (2010); Djalic
et al. (2012) and many other works.

A number of variants of such an idea exists, including for
example reservation mechanisms, the possibility of handing
over control from a client to another, the supervision by some
“instructor” client, inter-client communication, and much more.

Nonetheless, the “traditional” view just sketched results in a
crisp role distinction between the creator (and maintainer)
of the laboratory on one side, and the users (students and
instructors) on the other side.

There are of course many good motivation for such a scenario,
two being in the authors’ opinion the most important. One
resides in the typically complex and expensive nature of the
hardware/software architecture of a remote laboratory server.
This is particularly true if physical experiments are involved, as
witnessed by various examples like Guzmán et al. (2005), and
is only partially mitigated in the case of simulated experiments,
see, e.g., Sanchez et al. (2002), and from a more abstract and
general point of view, the discussion reported in Gomes and
Bogosyan (2009).

The other motivation, in some sense connected to the previous
one, is the complexity of both server- and client-side applica-
tions, the development of which requires to join and coordinate
control and software engineering expertise. This can be eased
by the use of some technology addressing the “remote user in-
terface” problem, such as the National Instruments LabVIEW 1

server. Anyway, the problem is not eliminated at all, especially
if one wants clients to be able of changing the control law and
not only its parameters – see Casini et al. (2005); Pastor et al.
(2005) for an example – or even to host not just user interfaces,
but also (part of) the controllers themselves.

However, the panorama is changing, at least potentially, as
nowadays it is possible to create a networked control system
– thus a remote laboratory – entirely with off-the-shelf devices
and technologies. In fact, mobile applications can be developed
and used to realise a “mobile laboratory”, almost without any
physical or computational constraint, since smartphones and
tablets abundantly possess the necessary computational power
and user interface richness.

By building on this idea, there is thus the possibility of having
the role of who offers and who uses a “remote” laboratory
played by the same people, which in turn opens a wealth of
new didactic and pedagogical opportunities. This work, starting
from some recently published ideas, presents – essentially in
the form of a position paper – a first nucleus of functionalities,
which enables a wide range of innovative teaching activities.
The possibilities range from the use of the mobile application
to make students to better understand concepts of basic control
courses, to more advanced activities where students can create
and test their own controllers or process simulators in an
affordable way, and in a self-contained yet realistic simulation
environment. A simple proof of concept is provided herein for
the proposed ideas, and some words are spent on how it can be
used to devise and deliver didactic activities at different levels.

1 LabVIEW is a trademark of National Instruments Corp., Houston TX.



The paper is organised as follows: Section 2 reports a synthetic
overview of the envisaged “mobile laboratory” architecture,
while Section 3 describes the resulting structure of the typical
application. Section 4 presents the basic types of activities
that can be carried out by the students, Section 5 illustrates
the envisaged developments, and finally Section 6 draws some
conclusions and sketches out future work.

2. ARCHITECTURE OVERVIEW

The introductory considerations reported in Section 1 allow to
summarise the needs as follows.

First, only off-the-shelf elements have to be used, and this
applies both to the hardware devices and the software devel-
opment environments; wherever possible, for apparent reasons,
free tools are to be chosen.

Second, the architecture has to allow mobile nodes to interact
both with other mobile nodes and/or a central server (generally
not of the mobile type, since this situation is most likely to
occur in the presence of physical experiments).

Third, although the presented activity lies in the domain of con-
trol education, it cannot avoid the necessity of some software
development expertise. In fact, one of the more interesting (yet
advanced) activities to propose to students is to modify existing
simulators, or create from scratch their own controller/process
one, and plug it into the application with a little (if any) inte-
gration effort with respect to the rest of the application. As a
consequence, care has to be taken to make the unavoidable dif-
ficulties manageable by the “average” control student, i.e., com-
prehensible and solvable with the typical software engineering
skills taught in (more or less) all control-centric curricula, by
minimising and isolating as much as possible the fragments of
code related to control and simulation topics.

After some considerations, the choice was made to ground all
the parts of the architecture that result in mobile software on the
Android operating system.

The main reason for that is the vast and increasing diffusion
of Android in the mobile (particularly smartphone) market;
this witnessed by the projected data of Figure 1, showing data
published by Gartner, Inc. (2011).

Fig. 1. Market shares for smartphone operating systems, 2015
projection.

A second one, somehow a consequence, is the expectable
standardisation of development tools for Android, and also the
creation of more user-friendly ones than those available to date.

Finally, the Android SDK (Software Development Kit) is based
on Java with all the modularisation benefits brought with

the object-oriented paradigm, allowing to isolate the control-
relevant fragments of code as needed.

However, despite its apparent advantages, Android (but from
this point of view virtually any mobile-targeted operating sys-
tem) has also some pitfalls. Such systems are in fact en-
dowed with quite complex an application interface, owing es-
sentially to the necessity of maintaining prompt response to
asynchronous events (like phone calls or messaging activities)
while at the same time running interactive applications. The
authors did not deem this difficulty strong enough to abandon
the smartphone as the device of election, since it is sumptuously
paid back by connectivity ease, but nonetheless the software
development problems remain.

When non-mobile nodes are involved, of course, the operating
system and development issues more or less vanish. However,
given the expectedly increasing need for smartphone-to-base
communication functionalities also in different domains with
respect to control, it can be assumed that adopting Android will
prove beneficial also from this viewpoint.

Coming to the development tools side, the decision was taken
to adopt the standard Android SDK framework, which means
developing everything in the Java programming language. At
present, however, the major IDE (Integrated Development En-
vironment) tools provide quite high-level debugging and device
emulation functionalities, but for the same reasons above, are
more targeted to the event-based programming typical of “stan-
dard” mobile applications than to the needs of control systems’
implementation.

Incidentally, Android is quite widely used also in the context of
computer education, including teaching operating systems (An-
drus and Nieh, 2012), which means that quite a lot of didactic
and support material is available, and more will be diffused in
the future. In any case, in the application structure described in
Section 3 as integral part of the proposal, care has been taken to
properly isolate the simulation- and control-related code from
the rest of the application, in a view to confronting control
students with challenging but feasible objectives as sketched
out above.

3. APPLICATION STRUCTURE

In this section we describe how the proposed mobile applica-
tion is structured, and highlight the relevant parts for possible
didactic activities.

The application can be structured as a classical client-server
architecture. The process simulation is managed on the server-
side, receiving control inputs by a client – the regulator – and
communicating in turn its output (see Figure 2).

+ request()
+ response()

- socket: Socket
Client

+ createProcess()
+ ...

- ssocket : ServerSocket
- Socket : Socket
- running : Boolean
- requests : Vector
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0..*

ProcessRegulator
1

1

1

1

1..*

Fig. 2. Client-server architecture.



The advantage of using such kind of architecture is twofold.
First, the process can have multiple outputs simulated in a cen-
tralised way by the server, and multiple control loops can be set
up and managed by different controllers (clients) independently
and in a distributed way. Second, the so designed architecture
allows the client to connect to a generic server and receive some
feedback measurements, in a totally transparent way, i.e., no
matter of what is on the server side. In fact, the actor commu-
nicating with the client can be either another mobile device,
or a web server simulating the behaviour of a physical system,
or even a server connected to and acting on a real plant (see
Figure 3).

Client Server

Fig. 3. Client-server interaction.

This is a first peculiarity of the proposed “mobile laboratory”,
since it opens different possibilities with a unique interface. Just
to give an idea, considering the experiment categorisation pro-
posed in Gomes and Bogosyan (2009), adopting this framework
allows to cover 3 out of 4 possible experiments:

• the “local simulation”, when two mobile devices are used
for the simulation of the process-control interaction;

• the “remote simulation”, when a mobile device connects
to a remote server on which the plant behaviour is simu-
lated;

• the “remote experiment”, when a mobile device connects
to a remote server which acts on a real plant,

and the only case that is left out is the “hands-on experiment”,
which, in some sense, stray from the concept of “mobile/remote
laboratory”.

Coming to some implementation details, the application can
take a lot of advantage of the Object-Oriented approach, since
there are essentially two entities into play: the process and
the controller. Both of those entities are just “abstract” and
depending on the user choices are instantiated accordingly. For
example, the regulator can be a PI or a PID (see Figure 4), and
the process can be a First Order Process (FOP), a First Order
Plus Dead Time (FOPDT), or a Second Order Process (SOP),
and so on (see Figure 5). However, this is just an example, and
different types of controller and process can be implemented.
In particular, the process is not constrained to be a transfer
function, it can be a physical model with specified inputs and
outputs of interest, encapsulating the simulation details in the
class methods. If the simplification to simulate the model at
fixed step is accepted – which is absolutely reasonable in the
addressed context – the extensions needed by the class diagram
of Figure 5 are straightforward.

Apparently, the sketched framework provides to date only a first
nucleus of functionalities, but can be easily extended with more

+ setTs(double Ts) : void
+ setSP(double sp) : void
+ setPV(double pv) : void
+ setAuto() : void
+ setManual() : void
+ computeCS() : double
+ updateParameters() : void

- double w
- double u
- double y
- double uMin
- double uMax
- double Ts
- boolean manual

Regulator
T

- double K
- double Ti
- double uOld1

PI
- double K
- double Ti
- double Td
- double N
- double uOld1
- double uOld2

PID

Fig. 4. Regulator class diagram.

+ getOuput(double u) : double
+ setTs(double Ts) : void

- double y
- double Ts

Process

T

+ setParameters() : void

- double mu
- double T
- double yold1

FOP

+ setParameters() : void

- double mu
- double T1
- double T2
- double yold1
- double yold2

SOP

+ setParameters() : void

- double mu
- double T
- double D
- double yold1

FOPDT

Fig. 5. Process class diagram.

classes, including more advanced control techniques, and more
complex models.

3.1 Some use cases

In the development of the application, some simple, but signif-
icant use cases are considered, and here briefly presented.

The first use case is to use the mobile application as a remote
regulator, and to control a process (simulated) on a different
mobile device. A typical scenario is the following:

• The user can choose among different controller structures,
e.g., PI or PID, and which server to connect via an IP
selection.

• The user interface (Figure 6) allow the user to select the set
point, and the regulator parameter values and to establish
the connection through the “Start control” button.

• The user can see the control variable, and the measured
output values by means of a some progress bars.

• The user can modify the parameter values online and
see the consequences on the control variable and on the
measured output.

• From the controller viewpoint other information is not
relevant, thus not shown to the user.



Fig. 6. User interface for a PI controller.

Another use case is the scenario in which the user selects
the process instead of the regulator part on a mobile device
(Figure 7).

• The user can choose among different process structures,
e.g., FOP, FOPDT, SOP, and so on, depending on the
implemented classes in the application.

• The user, pressing the “Start simulation” button, makes
the application start waiting for a client request (i.e., the
regulator request for the output value), and thus for control
inputs.

• When the connection between the process and the regula-
tor is established, the closed loop simulation starts.

• The user can change the model parameters, and reinitialise
the process to the initial conditions.

• The user can stop the simulation at any time by pressing
the “Stop simulation” button.

In both the presented cases, the students can get more insight on
how the parameters influence the closed-loop behaviour, and its
dynamic performance.

3.2 Isolating simulation and control code

As already stated, the application is written in Java, using the
Android SDK, thus it is divided into classes that expose public
methods (e.g., see again Figure 5) that can be modified without
altering the rest of the project. From a teaching point of view,
this is a fundamental aspect, since the students can modify very
isolated parts of the application – the control-relevant ones –
without taking care of the Android framework implementation
details.

Fig. 7. Screenshot of the mobile application.

A first worth noticing example of exploiting this feature is to
make students understand how to write the piece of code in
charge of managing the control-loop signals (see Listing 1).

Listing 1. Managing the simulation.

t h r e a d = new Thread (
new Runnable ( ) {

p u b l i c vo id run ( ) {
do ub l e u ; / / C o n t r o l v a r i a b l e
do ub l e y ; / / Outpu t v a r i a b l e
t r y {

w h i l e ( t r u e ) {
/ / Read t h e i n p u t
u = ( d ou b l e ) u In . g e t I n p u t ( ) ;
/ / Update t h e o u t p u t
y = proc . g e t O u t p u t ( u ) ;

/ / Update t h e GUI
progBar . s e t P r o g r e s s ( ( i n t ) y ) ;
p rogBar . s e t T e x t (

Double . t o S t r i n g ( y )
) ;

/ / Wait f o r t h e n e x t s a m p l i n g t ime
Thread . s l e e p (

( l ong ) ( p roc . g e t T s ( ) ∗1000)
) ;

}
} c a t c h ( I n t e r r u p t e d E x c e p t i o n ex ) {

r e t u r n ;
}

}
}

) ;



This is a crucial skill to acquire, since a wrong implementation
may lead to an unstable behaviour of the system, even if the
control is designed correctly.

On the other hand, another important aspect is worth evidenc-
ing. In fact, in basic control courses, students are used with
continuous-time systems, but are almost unaware of how those
systems can be simulated. Listing 2 shows a very simple imple-
mentation of the Explicit Euler discretisation for a continuous-
time First Order Process.

Listing 2. First Order Process class.

p u b l i c c l a s s FOP e x t e n d s P r o c e s s {
/ / P a r a m e t e r s
p r i v a t e dou b l e mu ;
p r i v a t e dou b l e T ;
p r i v a t e dou b l e Ts ;

/ / V a r i a b l e s
p r i v a t e dou b l e y ;

p r i v a t e dou b l e yo ;

/∗ . . .
∗ Other a u x i l i a r y methods o m i t t e d
∗ . . .
∗ /

p u b l i c d ou b l e g e t O u t p u t ( d ou b l e u ) {
do ub l e p = t h i s . Ts / t h i s . T ;
t h i s . y = (1−p ) ∗ t h i s . yo + t h i s . mu∗p∗u ;
t h i s . yo = t h i s . y ; / / s ave t h e s t a t e
r e t u r n y ;

}
}

The method getOutput can be easily modified with different
discretisation rules, and make the students better understand the
effect of this choice varying the sampling time Ts.

In both cases, this framework provides a “safe” hands-on exper-
imental laboratory to make student practice coding techniques
for control and simulation (Maggio and Leva, 2011), and see the
effect of a their choices with the mobile application—in some
sense covering also the last category of “experiment” presented
in Gomes and Bogosyan (2009).

4. THE PROPOSED DIDACTIC ACTIVITIES

The activities that can be carried out by the students with the
presented mobile laboratory architecture can be broadly divided
into three categories.

The first and simplest category consists of just using some
already developed experiments. In fact such an activity is very
similar to many others already presented and illustrated in the
literature, but with two differences. First, the use of a smart-
phone enhances flexibility in the fruition of the laboratory.
Second and most important, a group of students can be given
a complete laboratory, including both the experiment server
side (in general simulated) and the client side. This allows
for example to experiment in various conditions, experiencing
connection and other environmental problems that more tradi-
tional laboratory installations are less keen to evidence. This
activity can take place also in quite basic courses, and with a
tendentiously high degree of student autonomy.

The second and more complex category consists of building
a laboratory, by taking the modules already present in the
library and composing them into new structures. This puts
the students in direct contact with the software (and possibly
hardware) architecture, so as to induce in future control experts
also the knowledge of how solutions are realised in a mobile
context—a potentially precious skill when it will be for them
the time to interact with computer professionals. Also, this
type of activity allows to build and experiment with articulated
systems, possibly with more than one controller node acting
on one plant node with multiple loops. This activity is suitable
for more advanced (e.g., graduate) courses, and requires more
strict a guidance (e.g., by first providing some examples and
then periodically interacting with the students).

The third and most advanced category consists of actually
participating to the development and enrichment of the soft-
ware architecture. This can be substantiated for example into
writing new modules, always taking care to ease the use of
said modules on the part of people who will compose them
into new applications. Doing so inherently leads to learn how
to suitably enforce the encapsulation of android-specific (or
more in general, architecture-specific) facts when seen by the
developer. Such an activity is most likely to be carried out in the
form of a thesis, as quite strict an interaction is necessary with
the instructor, to actually grasp the involved interdisciplinary
competences.

5. FUTURE DEVELOPMENTS

At present, the developed software is just a nucleus, since the
choice was made to concentrate on the design of its architec-
ture, of which a sample has been explained in Sections 2 and 3.
A first implementation is released as free software within the
terms of the GNU General Public License version 3 (GPLv3) 2 ,
so as to share experience and ideas with the community de facto
at the very beginning of the library realisation. Nonetheless,
developments for the near future are already scheduled, and can
be summarised as follows.

A first “reasonably complete” set of blocks has been envisaged.
These include of course transfer functions to simulate simple
processes, but also controllers realised with as “industrial” as
possible an attitude, i.e., taking profit of the pursued control
code isolation – see the discussion reported before – to include
functionalities realised along the guidelines provided in Maggio
and Leva (2011), and including advanced ones like the autotun-
ing PIDs for use in remote laboratories described in (Leva and
Donida, 2008b). Also, simulators of simple processes based on
first-principle, and also nonlinear equations will be included,
such as for example small thermo-hydraulic plants. This will
enrich the students’ experience and its realism, allowing also to
experiment with control structures (feedforward compensation,
cascade, decoupling, and so forth).

On a tightly related front, a set of user interface modules
is being designed, to allow the developer of an application
to easily realise such interfaces with a control-oriented look
and feel (i.e., including graphs, trends, and the like). This is
important to further help isolate control code and streamline the
development of new applications, since Android has a number
of useful features – whence its choice apart from the dominant

2 It can be downloaded from home.deib.polimi.it/leva/
MobileLabs.html



and increasing diffusion – but the widget sets available in the
major IDEs for it, are not conceived for control applications.

Then, the possibility is being explored to have servers with
physical experiments, both based on PCs and composed of very
small, self-contained apparatuses that one may connect to a
laptop or tablet. The goal is to have student groups who will
run a complete remote laboratory, server included, to actually
experience the encountered difficulties. Here too, the experi-
ence gathered in the past, and described in several of the quoted
papers, will be exploited, together with exploring the possibili-
ties nowadays offered by powerful and quite inexpensive devel-
opment boards, like for example the Arduino or the Raspberry
Pi. Using such boards will of course complicate the design (an
activity at present not expected to be included in the didactic
one presented herein, however) owing to the necessity of hav-
ing them deal with the physical equipment on one side and
interact with the Android node on the other. Nonetheless, the
development ease and connectivity possibilities of such devices
should make the idea feasible, and reasonably straightforward
to realise.

Moreover, plans are to study possible integrations of the pre-
sented Android-based architecture with other frameworks for
networked laboratories. In this respect Easy Java Simula-
tions (Sánchez et al., 2005) is a natural candidate – on the server
side, quite intuitively – since it is Java-based, but by designing
and realising convenient wrappers to interface the architecture’s
Java code to heterogeneous modules, one might consider also
the numerous other alternatives available in the literature.

Finally, documentation and didactic material is being prepared,
and is expected to grow together with the library. Needless
to say, the authors hope that once the tool is released, the
community will help by providing cooperation, ideas, and
criticisms to improve the overall environment and make its use
most fruitful.

6. CONCLUSIONS

Building on some previously proposed ideas and results, a
first nucleus was presented of an Android-based architecture
that allows to create process simulators and controllers on
mobile devices, and then share them with others to compose
a complete, mobile “remote” laboratory.

After motivating the research, the architecture was described
with quite a high-level attitude, and an example of how it can
be used to design applications was sketched out.

Some possible activities were then devised, illustrating how
they can address students at various levels of competence
within a unitary pedagogical path, and pursuing goals suitable
for all the mentioned levels.

The proposal is apparently just the beginning of a long-term
work, that was also briefly illustrated. The authors hope that the
reported ideas and considerations will stimulate the community
to cooperate to what they believe to be a very promising topic
in control education.
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