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Autonomic computing systems are capable of adapting their behavior and resources thousands of times a
second to automatically decide the best way to accomplish a given goal despite changing environmental
conditions and demands. Different decision mechanisms are considered in the literature, but in the vast
majority of the cases a single technique is applied to a given instance of the problem. This paper proposes a
comparison of some state of the art approaches for decision making, applied to a self-optimizing autonomic
system that allocates resources to a software application. A variety of decision mechanisms, from heuristics
to control-theory and machine learning, are investigated. The results obtained with these solutions are
compared by means of case studies using standard benchmarks. Our results indicate that the most suitable
decision mechanism can vary depending on the specific test case but adaptive and model predictive control
systems tend to produce good performance and may work best in a priori unknown situations.
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1. INTRODUCTION
Autonomic computing is a very promising research area for confronting the complexity
of modern computing systems. Autonomic systems manage themselves without human
intervention, and their development involves a variety of exciting challenges [Kephart

This work was partially funded by the U.S. Government under the DARPA UHPC program. The views and
conclusions contained herein are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Government. Also, this work was partially supported
by the Swedish Research Council through the LCCC Linnaeus Center.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2010 ACM 1556-4665/2010/03-ART39 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:2 M. Maggio et al.

2005]. One of the most important of these challenges is the establishment of systematic
and reproducible processes for the design of autonomic systems.

In the literature, the autonomic paradigm is characterized by the presence of three
distinct phases: sensing, deciding, and acting. Notable examples of this division are
the Monitor, Analyze, Plan and Execute (MAPE) or Observe, Decide, Act (ODA) loops
[IBM 2006]. In both cases, the “decide”, or equivalently the “analyze and plan”, phase
is responsible for providing and enforcing the desired properties of the self-managing
system. Thus, the design of the decision phase is essential for obtaining the de-
sired self-configuring, self-healing, self-optimizing and self-protecting autonomic sys-
tem [Kephart and Chess 2003].

It has been noted that the design of closed-loop autonomic systems shows impres-
sive convergence with control engineering, which to date has been only marginally
exploited in the design of computing systems [Hellerstein et al. 2009]. In fact, modern
control engineering may provide useful complements or alternatives to the heuristic
and machine-learning decision methods used to date. In order to create systematic
and reproducible processes for decision making, it is important to understand both the
quantitative and qualitative differences between techniques.

This paper begins an investigation comparing decision making processes for self-
optimizing autonomic computing systems, covering heuristic, control, and machine
learning methods. Specifically, we examine a problem of resource allocation and create
an experimental framework where the available observation and action mechanisms
are fixed, but the decision mechanism can be changed. This framework allows us to
use different decision making techniques and compare their ability to achieve a de-
sired performance target. In detail, the novel contributions of this paper are:

— a discussion of literature techniques (heuristic, control-theoretical and machine
learning-based), analyzing their properties and guarantees, both theoretically and
in practice;

— the synthesis, development, implementation and testing of said techniques in the
mentioned framework;

— the application of the proposed solutions to some benchmark test cases, taken from
the PARSEC suite [Bienia et al. 2008], and the presentation of the results, both in
detail for a single benchmark and in an aggregate to summarize the effects seen in
multiple case studies.

Although autonomic systems based on the feedback control theory have been pro-
posed [Lu et al. 2006], the corresponding engineering tools and processes are far from
being fully exploited to date. To give a brief example, controlling behavior of appli-
cations requires application-level sensors if we are to take full advantage of control
theory’s capabilities. Such a capability complements typical analysis, providing, for ex-
ample, stability and convergence time guarantees for the online system. A reason for
the limited use of control is that concepts like those just mentioned are quite well as-
sessed in the control engineering community, yet it is not immediately obvious how to
extend them to the autonomic computing domain. Exploitation of a control-theoretical
framework requires a modeling phase involving all system components prior to the
algorithmic design of the computing system.

Having a model of the system, in the control-theoretical sense, means writing the
equations that describe system behavior. In the case of autonomic computing systems,
developing such a model may be difficult. In contrast, machine learning techniques
may require little to no explicit modeling because they capture complex relationships
online, automatically learning the interactions between components in a complex sys-
tem. Thus, in practice, the best solutions will probably combine techniques, enhancing
feedback control solutions with machine learning mechanisms, and vice versa.
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This paper significantly extends previous results on the same topic [Maggio et al.
2011] and its remainder is organized as follows. Section 2 describes the problem of self-
optimization applied to resource allocation, and shows the techniques qualitatively
compared for that challenge. In Section 3 the mentioned solutions are described in
detail, from the basic idea to the implementation, and some experimental results are
provided in Section 4. Finally, Section 5 concludes the paper.

2. DESIGN FOR SELF-OPTIMIZATION OF RESOURCE ALLOCATION
An autonomic computing system may be built with different goals, but its
essence is self-management [Kephart and Chess 2003]. Four main aspects of self-
management emerge in the literature: self-configuration [Wildstrom et al. 2005], self-
protection [Tsai et al. 2009], self-healing [Breitgand et al. 2005], and self-optimization,
which is the focus of this paper.

Several techniques have been used to synthesize decision mechanisms for self-
optimizing computing systems. As a notable example, [Ramirez et al. 2009] addresses
the problem of how to apply a genetic algorithm. The case study proposed therein is
the dynamic reconfiguration of an overlay network for distributing data to a collection
of remote data mirrors. The developed algorithm is able to balance the competing goals
of minimizing costs and maximizing data reliability and network performance.

In this work, we detail a single problem, whose generality allows us to draw some
considerations about the decision making processes for self-optimizing systems. Sup-
pose we want to build a self-optimizing operating system, and one of its tasks is the
assignment of resources to running applications. Assigning a resource to an applica-
tion is a cost for the system: it consumes power, it is consumed and it cannot be used by
other applications at the very same time. To clarify, this case is different for example
from the one in which an algorithm has to be selected (see e.g. [Ansel et al. 2011]),
that optimize for performance given an architecture. In that case, the algorithm choice
could be seen by the cost angle (it may consume more time and power) but also sim-
ply from the performance point of view. In this work, we want to balance the use of
resources and their cost for the system, therefore constraining the system to use only
the necessary resources to accomplish the applications goals.

Notice that the word resources may assume different meanings. In a single device,
an application may receive computational units or memory, while in a cloud infrastruc-
ture, a resource can be a server devoted to responding to some requests. Each manage-
able resource is a touchpoint in the sense of [IBM 2006]. Some proposals to address the
management of a single resource have been published in the literature; however, pro-
posals to manage multiple interacting resources are more rare. Intuitively, the number
of ways the system capabilities can be assigned to different applications grows expo-
nentially with the number of resources under control. Moreover, the optimal allocation
of one resource type depends in part on the allocated amounts of other resources, re-
quiring coordination.

In [Bitirgen et al. 2008], the authors periodically redistribute shared system re-
sources between applications at fixed decision-making intervals, allowing the system
to respond to dynamic changes. Their infrastructure is based on an Artificial Neural
Network that learns to approximate the application performance from sensor data.
Their neural network takes inputs from the system (amount of cache space, off-chip
bandwidth, and power budget allocated to the application). In addition, the neural
network is given nine attributes describing recent program behavior and current cache
state (number of reads and misses, and so on). The network is implemented in a sep-
arate hardware layer, to reduce its overhead. Training data can be gathered online,
allowing an accurate model even when the operating conditions are changing.
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Section 2.1 introduces some commonly used techniques, that will be here used as the
basis for the comparison, while Section 2.2 discusses a qualitative comparison between
the mentioned solutions. The rest of the paper develops and implements the proposed
strategies and compares them.

2.1. Techniques
This section presents an overview of some common techniques for making decisions in
a self-optimizing system.

Heuristic solutions start from a guess about application needs and adjust this guess.
Heuristic solutions are designed for computational performance or simplicity at the
potential cost of accuracy or precision. Such solutions generally cannot be proven to
converge to the optimum or desired value. A notable example is the greedy approach
in [Chase et al. 2001] that optimizes resource allocation and energy management in a
hosting center. This system controls server allocation and routing requests based on
an economic model, where customers bid for resources as a function of service volume
and quality.

Standard control-based solutions employ canonical models – two examples being
discrete-time linear models and discrete event systems – and apply standard control
techniques such as Proportional Integral (PI) controllers, Proportional Integral and
Derivative (PID) controllers or Petri nets. Assuming the model to be correct, some
properties may be enforced, among which stability and convergence time are prob-
ably the most important ones, thereby providing formal performance guarantees. As
an example, Pan et al. [Pan et al. 2008] propose two PI controllers for guaranteeing
proportional delay differentiation and absolute delay in the database connection pool
for web application servers. The model used is a first order linear time-invariant sys-
tem and the PI controllers are designed with the Root Locus method. Such techniques
may not however be enough in the case of heavily varying environment or workload
conditions.

Advanced control-based solutions require complex models, with some unknown
parameters (e.g., the machine workload) that may be estimated online, to provide
Adaptive Control (AC). AC requires an identification mechanism and the ability to ad-
just controller parameters on the fly. Another advanced control strategy is Model Pre-
dictive Control (MPC) where the controller selects the next actions based on the predic-
tion of the future system reactions. The overhead of sophisticated control solutions is
greater than that of standard controls; however, one may still be able to formally ana-
lyze parameter-varying systems and prove stability, obtaining formal guarantees even
in the case of unknown operating conditions. For example, [Liu et al. 2005] proposes an
approach based on model identification, to adjust the CPU percentage dedicated to the
execution of a web server. A first-order auto-regressive model with exogenous input is
used for identification purposes. A PI control structure is presented together with an
adaptive controller. The recursive least squares method is used to estimate the model
parameters.

Model-based machine learning solutions require the definition of a framework
in which to learn system behavior and adjust tuning points online. Artificial Neural
Networks (ANN) are often useful to build a model of the world for control purposes, see
again [Bitirgen et al. 2008]. ANN solutions may be used to predict the system reaction
to different inputs and, given some training samples, to build a model. The structure
of the network and the quality of the training data are critical to performance. The
accuracy of the results depend on these crucial choices, and thus no a priori guarantees
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can be enforced. Another model-based family of techniques is Genetic Algorithms (GA),
see e.g. [Ramirez et al. 2009] for a discussion on their use in autonomic system. Using a
genetic algorithm requires selecting a suitable representation for encoding candidate
solutions (in other words, a model). In addition, some standard operators (crossover
and mutation) must be defined and a mathematical function must be provided to rate
candidate solutions and select among them. The overhead of both neural networks and
genetic algorithms may in principle be very significant. Also, Bodı́k et al. use linear
regression to predict the workload based on previous data. This predicted workload is
fed to a performance model that estimates the number of servers required to handle
it; these servers are subsequently activated [Bodı́k et al. 2009].

Model-free machine learning solutions do not require a model of the system. No-
table examples are some Reinforcement Learning (RL) algorithms like Q-Learning and
SARSA. It is worth noticing that a recent research trend is to complement RL solution
with a model definition [Tesauro 2007; Tesauro et al. 2006]. According to [Martinez
and Ipek 2009], RL agents face three major challenges. The first challenge is how to
assign credits to actions, the second is how to balance exploration versus exploitation
and the third is generalization. The convergence time of an RL algorithm is often crit-
ical [Sutton and Barto 1998] and complementing them with a model of the solution
space may decrease it [Ulam et al. 2005].

2.2. Qualitative comparison
Providing a meaningful comparison of the mentioned techniques is apparently hard.
Part of the difficulty is due to the fact that literature works typically implement a
single technique to solve a specific problem. Before proposing an experimental evalua-
tion of different techniques, some qualitative points are thus worth briefly discussing.
Specifically, we compare these techniques along four dimensions: (i) the presence or ab-
sence of a model, (ii) the extent to which they provide analytic performance guarantees,
(iii) their ability to handle unexpected conditions, and (iv) their ease of implementa-
tion.

One point that differentiates the techniques is the presence (or the absence) of a
model. Intuitively, a heuristic solution in principle does not require a model, while
RL is the only model-free machine-learning based mechanism mentioned herein. The
difficulty of developing a model can vary depending on what that model is required
to capture. In the case of an ANN, for example, defining a model means structuring
the dependency between input and output variables. Equivalently, setting up a GA
means defining a way to encode the solution and to evaluate it, without necessarily
capturing the relationship between the modeled quantities. On the contrary, building a
model for control-theoretical purposes, means deriving the mathematical relationship
between the involved entities. This crucial matter will be treated with an example in
Section 3.4.1.

Another interesting comparison point is the presence of performance guarantees.
Ideally, a decision methodology may be proven to converge to a predefined performance
level with a known convergence time, at least in standard (or “nominal”) conditions.
This is the case, for example, of standard control techniques, where the design of the
system may be carried out so the system is asymptotically stable, implying that the
measured signal will approach the set point with the desired accuracy and timing.
With a control-theoretical solution one is able to compute the convergence rate (i.e.,
the time the system needs to stabilize at the desired value) analytically. This is usually
not the case with heuristic or machine learning solutions, although in the latter case
some algorithms are proven to converge to the optimal solution if it exists and under
some technical assumptions [Sutton and Barto 1998].
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The third topic to be addressed is how the decision mechanism is able to handle
unexpected (non-nominal) situations. Such situations may include unseen data, i.e.,
data that were not tested before and still depend only on the entities under control.
Also there may be environmental fluctuations. Suppose for example that something is
happening in the machine we are controlling, or in the network, and does not depend
on the entities under control. This situation is different from the previous one, since
the decision mechanism may not have the correct actuators to act on the system. The
last thing to be handled are failures, distinguished as soft or hard. Soft failures limit
the performance of the system, while hard failures completely eliminate the system’s
ability to respond to requests. A control-based solution is potentially able to handle
any kind of situation, except for hard failures, especially if the system is augmented
with identification and prediction mechanisms; however, the system needs to be de-
signed with the correct actuators to handle performance degradations and environ-
mental fluctuations. Suppose, for example, that a chip temperature control mechanism
reduces the clock frequency when the temperature is too high. In this case, any deci-
sion mechanism should be able to increase the number of computation units (CPUs)
to be allotted to a specific application in order for it to reach its goals. However, if the
number of CPUs is not an actuator, any solution can fail. At the same time, machine
learning solutions may handle unseen data and failures if designed carefully. However,
it is usually stated that for example in ANN, the test data that should be provided to
train the network has to be representative of the entire space of solutions, therefore
tendentiously reducing robustness. A decision mechanism’s ability to handle unseen
data is something that should be carefully analyzed.

Table I. Summary of qualitative comparison

Performance Low Model not Reaction to
Guarantees Overhead Needed Unseen

Heuristic X X
Standard Control X X
Advanced Control X X

Neural Network X1 X
Reinforcement Learning X X

1 It is worth stressing that in this case we say the neural network does not need a model, since it is
not necessary to specify the dynamic model of the system, but to choose the structure of the network,
usually easier and connected to intuition more than to formal analysis.

The last consideration is on ease of programming. A heuristic solution usually does
not require much effort to be implemented, while machine learning and control theory-
based ones are often harder, as a system analysis (in the control engineering sense) is
required. These characteristics are summarized in Table I.

3. IMPLEMENTATION FOR DECISION MAKING IN SELF-OPTIMIZING SYSTEMS
To compare different decision mechanisms, we focus on a single problem: that of cre-
ating a runtime system that allocates resources to allow an application to achieve a
target performance. This autonomic runtime system must be capable of observation,
action, and decision. Since we are interested in comparing decision mechanisms only,
we fix the observation and action phases and develop the framework in flexible way
such that different decision mechanisms may be “swapped in.” This section describes
the experimental framework and the decision mechanisms under test, starting with
the observation phase, then the action phase, and finally each of the decision mecha-
nisms is detailed in turn.
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3.1. Observation
In our runtime framework, feedback is provided directly by applications using the Ap-
plication Heartbeats API [Hoffmann et al. 2010]. This API provides a general mecha-
nism for observing application performance and goals using the abstraction of a heart
beat. The application emits heart beats at important parts of the code (e.g., once a
frame for a video application) performance goals are then expressed in terms of a de-
sired heart rate per second or a desired latency between specially tagged heart beats.

The Heartbeats framework has been applied to applications from the PARSEC
benchmark suite [Bienia et al. 2008] and these applications have been found to divide
into two groups based on the heart beat signal [Hoffmann et al. 2011]. The first group
is applications with low variance in the signal (i.e., their performance is steady from
heart beat to heart beat) and those with high variance (i.e., the performance varies
tremendously from heart beat to heart beat). The varying needs of different bench-
marks mean these applications provide a good set of tests for our resource allocation
system.

3.2. Action
In this specific work two different knobs, or actions, are used, although the same tech-
niques described hereafter apply to different configurations. In the present configura-
tion it is possible to suggest to the operating system how many cores an application
can use and to change the frequency of those cores. By “suggesting to the operating
system” we mean that we can modify the affinity mask of the processes composing
an application, using the taskset Unix command, forcing it to run on a subset of the
hardware capabilities. Being the application not parallel, however, could invalidate our
actuation mechanism, since we could specify a number of cores that would be kept idle
or be run other processes onto. The frequency change is supported by the cpufrequtils
package.

In the following we refer to c as number of cores currently allocated to the running
application and to f as the actual frequency of these cores, hr as the current heart rate
provided by the application, hrmin as the minimum threshold and hrmax as the maxi-
mum heart rate value the application should provide. We also define the desired heart
rate hr◦ = 0.5(hrmax+hrmin). Moreover, cmin and cmax are the minimum and maximum
number of cores that can be given to the application and fmin and fmax the minimum
and the maximum frequency that can be set for those cores. In the remainder of this
section, we describe each of the evaluated decision mechanisms.

3.3. Heuristic
Heuristic methods are often used to speed up the search for a solution whenever an
exhaustive search of the solution space is not affordable. The technique ignores the
possible incorrectness of the solution.

The values of every knob can be numerically ordered for increased capabilities.
Whenever it is not possible to provide a sort function, the different values could be
just listed. An heuristic method could measure the actual performance and compare it
with the target levels. If the actual performance value is below the minimum threshold
the heuristic chooses a dimension, corresponding to a single knob value, and performs
a move increasing the amount of resources allocated to the application. With the same
rationale, if the actual performance value is above the maximum threshold, the heuris-
tic selects a knob and diminishes its value.

The knob selection can be provided with a priority based mechanism that changes
actuator values that are considered more effective on the application first and moves
to less effective actuators after or a random selection or other techniques. Intuitively,
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if the knob values can not be ordered, the search could take much more time with
respect to the amount of time it would take in the opposite case. According to the
heuristic nature of this solution, no guarantees are given that the system will enter
the best state to attain the performance goal with the minimum amount of resources
possible.

3.3.1. Single actuator heuristic. First, we suppose there is a single knob on the machine,
being this the number of cores allotted to the single application processes. In this case
the heuristic setup is straightforward and the system can be found in 1 + cmax − cmin
possible states. Formally, the number of cores to be allotted at the k-th step of the
algorithm execution c(k) is given by

c(k) =

{min (cmax, c(k − 1) + 1) hr(k) < hrmin
c(k − 1) hrmin ≤ hr(k) ≤ hrmax
max (cmin, c(k − 1)− 1) hr(k) > hrmax

(1)

Informally, whenever the heart rate signal we use as a sensor of the application pro-
gresses is below the minimum threshold, the number of cores is increased, limiting this
value to cmax. If the signal is above the maximum threshold, the value is decreased, to
a minimum of cmin cores allocated to the running application.

3.3.2. Multiple actuators heuristic. Second, we add to the previous system the frequency
knob. In so doing, we need to select how to explore the solution space. We define a
priority on the two actuators, assuming that frequency changes are more invasive on
the system in its entirety, and should be done less frequently and we use the heuristic
formalized in Algorithm 1.

ALGORITHM 1: Multiple actuators (cores and frequency) heuristic solution
Require: hrmin, hrmax, cold, cmin, cmax, fold fmin, fmax, fstep

Ensure: c, f
hr ← measured application heart rate
if hrmin ≤ hr ≤ hrmax then
c = cold

f = fold

else if hr > hrmax then
if c = cmin then
f = max (fmin, fold − fstep)
c = cmax

else
c = cold − 1
f = fold

end if
else if hr < hrmin then

if c = cmax then
f = min (fmax, fold + fstep)
c = cmin

else
c = cold + 1
f = fold

end if
end if

This means that whenever the number of cores reaches cmin and the system capa-
bilities need to be diminished, the clock speed of the cores is diminished. If the system
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resources are to be augmented and the number of cores is cmax the frequency of those
cores is augmented. Another possibility could be to randomly choose the actuator to
act on, which probably makes more sense when a large number of knobs are available.

3.4. Control-theoretical
Autonomic and self-optimization capabilities have been added to computing systems
via feedback control [Hellerstein et al. 2004]. Different approaches were developed in
the literature up to date to solve a variety of specific problems, although a general
lack of generalization could be noticed. An attempt to generalize these solutions was
proposed [Zhang et al. 2002], however its success was limited, probably due to some of
the limitations discussed in [Hellerstein 2010].

For the proposed problem, a preliminary control result was published [Maggio et al.
2010], that addresses the number of cores as a single knob and uses a basic control
scheme. In the following, we extend these results proposing a more flexible model and
we synthesize a controller that is much more general and could in principle manage
any kind and combination of resources.

A key point in building a control system is the choice of the modeling framework
and control formalism. There are many possibilities including continuous or discrete
time linear or nonlinear systems, discrete event models, Petri nets, and a vast corpus
of possible other choices. In the following, discrete-time linear systems are used. Once
the formalism is chosen, the application of a fully control-theoretical approach requires
that a model is written. In fact, the synthesis of a control system starts from the def-
inition of what is called the “open loop behavior” of the object to be controlled. In the
definition of the open loop behavior we should introduce a “control signal” that drives
the system performance.

Probably one of the best reasons to use a control-theoretical framework for a decision
mechanism is the performance guarantees control provides. In fact, when modeling
and analyzing the closed-loop system, proving stability means proving that the heart
rate value would reach the desired point, if the control system is well-designed and the
set point is feasible.

3.4.1. The model. We define the model for the open loop behavior of our system as
follows. The performance of the application at the k-th heart beat is given as

hr(k + 1) =
s(k)
w(k)

+ δhr(k) (2)

where s(k) is the relative speedup applied to the application between time k − 1 and
time k, and w(k) is the workload of the application. The workload is defined as the
expected time between two subsequent heart beats when the system is in the state
that provides the lowest possible speedup. In this model, a speedup is applied to the
system and it clearly controls the heart rate signal. This formulation is general so
the source of speedup can vary and may include the assignment of resources, such as
cores, servers and memory, or the online modification of the algorithms used in the
application.

The simplicity of this model is both an advantage and a disadvantage. Obviously
we are not modeling all the components that may interact with the application and
change its performance value, but a model does not need to be complete to serve its
control purposes (as decades of experience in other domains like process control have
shown). We introduce the term δhr(k) as an exogenous disturbance that may vary the
application behavior in unexpected ways to deal with the unknown. However, using
a simple model to describe a much more complex behavior may be effective, if we are
correctly describing the main components that interact with the modeled object.
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3.4.2. The control synthesis. The next step in order to exploit the capabilities of a
control-theoretical framework is the choice of a controller that constrains the behav-
ior of the closed-loop system, usually named the control synthesis. This build phase
involves the specification of the desired behavior, in this case, maintaining a target
heart rate value. Some simple controllers may be synthesized for the problem at hand.

Probably the easiest control solution would be a Proportional (P) controller, that
would compute the relative speedup proportionally to the error between the desired
heart rate and the actual measured one. Another viable choice are Proportional and
Integral (PI) and Proportional, Integral and Derivative (PID) controllers. In the former
case the speedup is computed as a function of the error and its integral over time,
while in the latter a term based on the actual trend is added to these two. These
controllers are usually very easy to build, the only action involved is the choice of their
parameters (e.g., the degree of proportionality of the various terms). More details on
how to build and parameterize such controllers may be found in [Åström and Hägglund
2005; O’Dwyer 2006].

Another standard control solution is a Deadbeat controller. Its synthesis involves the
specification of the Z-transfer function between the input data (the desired heart rate,
r̄) and the output (the measured heart rate r). In our case we specify that function as

R(z)
R̄(z)

= µ
z − z1

(z − p1)(z − p2)
(3)

where z−1 is the delay operator and {z1, p1, p2} are a set of customizable parameters
which alter the transient behavior. We want to shape the function so that the overall
gain of the closed loop system is 1, meaning that the input signal is reproduced to the
output one, therefore we choose µ = (1− p1)(1− p2)/(1− z1).

The Deadbeat control is straightforward to synthesize, in that the closed loop trans-
fer function

R(z)
R̄(z)

=
R(z)C(z)

1 +R(z)C(z)
(4)

where C(z) is the controller transfer function and can be obtained solving the equation.
The control equation is then found by taking the inverse Z-transform of C(z) to find
the speedup s(k) to apply at time k:

s(k) = F · [As(k − 1) +Bs(k − 2)+
+Ce(k)w(k) +De(k − 1)w(k − 1)] (5)

where e(k) is the error between the current heart rate and the desired heart rate at
time k and the values of the parameters {A,B,C,D, F} come from the controller syn-
thesis and are

A = − [−p1z1 − p2z1 + p1p2]
B = − [p2z1 + p1z1 − z1 − p1p2]
C = + [p2 − p1p2 + p1 − 1]
D = + [p1p2 − p2 − p1 + 1] z1

F = + [z1 − 1]−1.

(6)

The choice of the parameters {z1, p1, p2} allows customization of the transient response.
A preliminary discussion on different viable ways to impose the desired speedup value,
the parameters values and some words on how to shape different responses and there-
fore select the parameter values can be found in the technical report [Hoffmann et al.
2011].

However, it is evident that the speedup equations depend on w(k), the workload
value. It is not always possible to have an off-line estimation of the workload value,
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so a robustness analysis is in order. Suppose to use wo as a nominal value for the
workload. Trivial computations show that if the actual workload w is expressed as
wo(1 + ∆w), thereby introducing the unknown quantity ∆w as a multiplicative error,
then the eigenvalue of the closed loop system is ∆w

(1+∆w) . Requiring the magnitude of
said eigenvalue to be less than unity, one finds that closed loop stability is preserved for
any ∆w in the range (−0.5,+∞) hence if the workload is not excessively overestimated
such a simple control law can effectively regulate the system despite its variations.

3.4.3. Single actuator basic control. The speedup signal s(k) can be translated into the
value of a single actuator, defining a relationship between the value of the knob and
the speedup. In the case of the number of cores we could for example assume that the
application speeds up linearly with c(k). Therefore, in the test hardware, the maximum
speedup that can be applied is cmax while the minimum one is cmin.

3.4.4. Multiple actuators basic control. Different maps from the computed s(k) to be ap-
plied on the system and the couple c(k), f(k) can be defined. We choose to set

ŝ(k) = c(k)
f(k)
fmin

(7)

where ŝ is the estimated speedup given in the state c(k), f(k). The minimum speedup
applicable in the system is therefore cmin while the maximum one is cmaxfmax/fmin.
Therefore, given the speedup value computed by the controller, we map that value into
the couple of values for our knobs.

3.4.5. Single actuator adaptive control. A standard control solution may be sufficient for
many systems and applications, but much more can be done by introducing more ar-
ticulated (e.g., adaptive) techniques. Suppose that the proposed control system is aug-
mented with an identification block, which provides an online estimation of the work-
load. Adding this capability to a standard control system turns it into an adaptive one.
Different techniques can be used for identification; we implement a Recursive Least
Squares (RLS) filter to estimate the workload value [Ljung 1998] and turn the stan-
dard Deadbeat controller into an adaptive one. The adaptive controller computes the
desired speedup value, which is subsequently translated in the control signal with the
same rationale of the basic methodology.

3.4.6. Multiple actuators adaptive control. Adaptability is not influenced in this case by the
number of actuators. However, even more complex solutions may be envisaged, where
more parameters describe the relationship between the control entities (number of
cores assigned to the application and their clock speed) and the performance metric, to
build a more sophisticated controller. One could for example identify regions of the so-
lution space where adding a single core does not influence the application performance
and more than one computing unit is needed to speedup the application. At the same
time, one may see that adding cores and changing their frequencies does not influence
the application, therefore discovering it can be for example memory bounded.

3.4.7. A more complex model. The considered model, however, does not capture all the
behavior of the application to be controlled. An example of this non captured behav-
ior could be the presence of nonlinearities in the actuation mechanism. For example,
usually, the assumption that the number of cores linearly increase the speedup, and
therefore the heart rate of the application, does not hold. Hence, a more complex model
can be designed in order to extend the potentialities of the control approach.
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The modelM of a generic application is still very simple and can be expressed as

M :
{
hr(k) = p · hr(k − 1) + (1− p) · ŝ(k − 1)

0 ≤ p < 1 (8)

with the parameter p that, in general, tends to be 0 because the dynamics of the appli-
cation are very fast, leading to a “pure-delay” system.

As already stated, the behavior of the system in terms of heart rate can be affected
by assigning to the application very different resources that we can, generically, call
as actuator. The model we propose considers a set a of Na different knobs. Therefore,
to consider a variable number of knobs, the relation (7) is generalized. Denoting with
ai a generic actuator the effective speedup given to the application is expressed as

ŝ(k) =
Na∏
i=1

[ki [ai(k)]αi + oi] . (9)

where each actuator contributes according to some parameters, namely ki, αi, and
oi. We can thus define the vector ϑ ∈ <3Na which contains all these parameters for
every i in the interval 1 . . . Na, describing the “profile” of the application. In general,
those parameters are time-varying depending, for instance, on the portion of code the
application is executing. This problem is strictly linked to the time-varying workload
discussed in Section 3.4.5, and will be addressed also in this solution with an adaptive
mechanism. From equation (9), a block Aϑ can be defined. This block stands for a
nonlinear and time-varying relation that maps the manipulated variables (the knobs
values) to the real speedup experienced by the application as a consequence of those
values.

This new model, more complex, is able to capture dynamics that were impossible
to be described with the previously introduced one. On the other hand, it is harder to
design an effective control law for it.

3.4.8. Single actuator model predictive control. Model Predictive Control (MPC) can be
used to provide a control strategy for the mentioned problem. In MPC, a model of the
system is available, and the control system keeps that model updated. At each control
step, the controller chooses the next action to be performed so that the discrepancy
between the desired behavior and that forecast with the model be minimized. Since
this is done at every step, quite loose hypotheses on the model accuracy are enough to
ensure that the iterative process just sketched out converges and drives the system to
the desired behavior. MPC is thus a very widely used technique exactly when complex
and/or time-varying dynamics are encountered and only simple models can be reliably
devised, theoretical explanation and many examples can be found in [Camacho and
Bordons 2004], to which the interested reader is referred.

The control scheme devised for the more complex model is depicted in Figure 1. First,
consider the case in which there is only the number of cores as a knob, the speedup
signal becomes

Aϑ : ŝ(k) = kc [c(k)]αc + oc (10)

However, ϑ is unknown and must be estimated in order to design an actuation block
A−1

ϑ̂
which is able to map the control signal to the number of cores to be allotted to

the application. Notice that if ϑ̂ = ϑ then s = ŝ, and the speedup computed from the
controller is the actual speedup given to the application.

The predictive control law is to be designed now. Denoting with y the output of the
controlled system, i.e., the heart rate, the r-step ahead predictor of the modelM, which
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Aϑ
s ŝa M

T

R A−1

ϑ̂

hrhr◦

Application

θ

Fig. 1. Adaptive Predictive control loop. The application is evidenced with the dashed red line.

is an Auto Regressive with eXogenous input [Bittanti and Picci 1996], ARX(na, nb), is

ŷ(k + r|k) = Wr(z)y(k) +Hr(z)∆s(k). (11)

Hence, denoting withNp the prediction horizon – in our experiments we used a value of
2 – we can define the vector of r-step-ahead predictors of the output, with r = 1, . . . , Np,
and the vector that contains the last na outputs, i.e., respectively

Ŷ ′ = [ŷ(k + 1|k) ŷ(k + 2|k) . . . ŷ(k +Np|k)] ,

Y ′ = [y(k) y(k − 1) . . . y(k − na + 1)] .
(12)

Denoting with W the coefficient matrix of the Np predictors from the past outputs to
the predicted output, of dimensions Np × na

W ′ =
[
W ′1 W ′2 . . . W ′Np

]
(13)

with ∆So the vector containing the nb past values of the speedup signal and with ∆S
the Np − 1 future (unknown) values of the speedup signal:

∆S ′o = [∆s(k − nb) ∆s(k − (nb − 1)) . . . ∆s(k − 1)] ,

∆S ′ = [∆s(k) ∆s(k + 1) . . . ∆s(k +Np− 2)] .
(14)

Finally, defining with Φo, of dimensions Np × nb, and Φ, of dimensions Np × Np − 1,
the coefficient matrices of the predictors from the speedup to the predicted heart rate
become

Φo =


hnb

hnb−1 . . . h1

hnb+1 hnb
. . . h2

...
...

. . .
...

hnb+Np−1 hnb+Np−2 . . . hNp

 , Φ =


0 0 . . . 0
h1 0 . . . 0
...

...
. . .

...
hNp−1 hNp−2 . . . h1

 . (15)

We can write the predicted output as Ŷ = WY + Φo∆So + Φ∆S. The optimal control
signal is computed minimizing the cost function J defined as

J = (Y◦ − Ŷ)′Q(Y◦ − Ŷ) + ∆S ′R∆S (16)

whereQ andR are diagonal matrix of weights that must be chosen when designing the
control law. Similar applications would benefit similarly from setting similar weights.
Roughly speaking, see again [Camacho and Bordons 2004] for details, the elements of
Q are proportional to the relative importance of the error components, thus compara-
tively weighing each objective versus the others. R is conversely a control penalty: the
higher its components, the more reluctant the system will be to exert a control action
on the corresponding component (if R the so called cost-less control MPC is obtained
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since the controller assumes that control actions cost nothing). Y◦ is a column vector
of length Np where each element is equal to the set point. Therefore

∆S = (Φ′QΦ +R)−1Φ′Q(Y◦ −WY − Φo∆So). (17)

The Receding-Horizon principle is applied and the first element of ∆S is taken to
compute the control value as

s(k) = s(k − 1) + ∆s(k). (18)

It is worth stressing that the quadratic optimization problem is solved offline in closed
form and results to be very simple. Subsequently, the described control law is used.
This is very efficient from a computational standpoint and does not overload the cal-
culations. As a consequence, just some linear algebra involving matrices operations is
in order to compute the control signal.

The tuning block T , shown in Figure 1, performs the adaptation mechanism imple-
ments the classical RLS identification technique [Ljung 1998], taking s and y signals
as inputs and online providing an estimate of θ ∈ <na+nb , containing the parameters
of the ARX(na, nb) model. In the following, na = 1 and nb = 1.

3.4.9. Multiple actuators model predictive control. Extending the results of the single ac-
tuator case means essentially designing a suited A−1

θ̂
in order to compute the actual

values of the manipulated knobs. In this case, the number of cores is coupled with the
frequency and thus, equation (9) becomes

Aϑ : ŝ(k) = [kc c(k)αc + oc]
[
kf

f(k)
f0

αf

+ of

]
(19)

and rules can be defined to invert it, providing the number of cores and frequency from
the speedup signal. The same rule used for the adaptive controller are here used.

3.5. Machine learning
Machine learning techniques are often employed as decision mechanisms for a variety
of systems. Roughly speaking, machine learning allows computers to evolve behaviors
based on empirical data, for example from sensor data. During the years, a number of
techniques have been proposed to address both specific and broad issues. As done for
classical control-theoretical frameworks, we focus our exploration on well-established,
standard decision mechanisms. Therefore, we will explore the implementation of a
neural network and a reinforcement learning algorithm, as examples of model based
and model free techniques, respectively. Some words are spent on the use of a genetic
algorithm.

3.5.1. Genetic algorithms. Genetic Algorithms (GA) are another class of popular and
well assessed machine learning techniques. The employment of a genetic algorithm
requires selecting a suitable representation scheme for encoding candidate solutions,
to define some standard operators, crossover and mutation, and to encode a mathe-
matical function to rate the obtained solutions and to select among them. A possible
solution for the proposed case is to synthesize a solution as a tuple of knob values, in
our case a couple {cores, frequency} and to use as crossover operator the choice of
the number of cores from the first solution and the frequency from the second pair.
More in general, one could select part of the knob values from the first candidate and
part from the second. A mutation operator could be an increase or decrease in one of
the knob values. The fitness function for the proposed problem could be some function
of the desired heart rate and the expected speedup given to the application by the en-
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coded solution, for example 1/d(hr◦, hr(k)) where d(·, ·) represents the distance of the
two points, calculated with a generic norm.

Notice that this straightforward idea for GA is not however of particular interest
for the proposed problem. Usually, GAs are used when it is hard to explore the space
of possible solutions (either because that space is infinite or for other reasons). In
the proposed scenario, the number of possible solutions is very low (unless we have
a variety of different knobs) and the algorithm would just choose the most suitable
solution, without evolution. In this case it makes no sense to implement a GA and pay
its overhead. However, there may be different ways to encode the solution that would
exploit the potential of the strategy, especially when a lot of different actuators are
available.

3.5.2. Artificial Neural Networks. Artificial Neural Networks (ANNs) are the AI attempt
to simulate brain activity. ANNs are networks composed by many instances of the
same mathematical model representing a neuron. Each neuron is a “multiple inputs,
single output” element and it is characterized by a vector of weights and an activation
function. ANNs are usually organized as a hierarchy of layers of neurons and have
algorithms to learn from classified examples how to bind inputs of the first layer to
outputs of the last layer. In our approach the learning procedure is implemented by
very common back-propagation algorithm.

ANNs need examples to be able to learn. But this is open contrast with our
online/unseen-before system. To cope with that we implement a very simple layer
above the ANN, drawing from classical planning and rule-based classification. We use
a single measure to monitor the system, taking values in the interval [0,+∞). This
measure is assumed to represent the “state” of the application and, through hrmin,
hrmax, hr◦, we can partition the whole state space in 4 macro states. The state is coded
in an input vector of length 4, the action is the output of the feed-forward ANN.

Our actuators in this case have total ordering in the values they can assume, so, for
each of them, three possible actions can be taken: increase, decrease or do nothing. We
therefore need two output neurons for each actuator as given by min x|2x ≥ 3.

Given this problem formulation, the ANN needs to decide whether an action was
good if taken in a certain state, i.e. whether or not to learn the state-action couple. To
this extent, a set of rules is defined, to decide if the ANN should learn and how many
iteration of the learning algorithm should be run. The main drawback in this hybrid
approach is that, at the beginning, random choices are necessary to decide which is the
right “direction”.

The network has four layers. The first is the input one, that encodes the current state
with four neurons, specifying the current heart rate position against thresholds. The
two hidden layers have twenty neurons each, the number of neurons of the output layer
depends on the number of actuators used. In general, the number of neurons to be used
in the hidden layers is a critical parameter and would deserve further investigations,
that are deferred to future works due to space limitations. The software library the
implementation relies on [Nissen 2005] has few options to prevent over-fitting as much
as possible, however, different configurations were tested resulting in similar results.

3.5.3. Single actuator neural network. In this case, we have two output neurons. If the
first is greater than the second, an additional core is added to the application. If the
second is greater than the first, a single core is deallocated from the application. When
the output neurons are equal, the neural network is communicating to keep the cur-
rent action and leave the number of cores unchanged.
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3.5.4. Multiple actuators neural network. In this second case, four output neurons are
used, to encode the couple of changes in cores and frequency, as done for the single
actuator case.

3.5.5. Reinforcement learning. As for reinforcement learning solutions, we implement a
SARSA (State-Action-Reward-State-Action) algorithm for the problem at hand [Sutton
and Barto 1998]. The algorithm learns a decision policy for the system. A SARSA im-
plementation interacts with the environment and updates the policy based on actions
taken, known as an on-policy learning algorithm.

We define three different states in which the system can be found. In the first one,
the heart rate of the monitored application is above the maximum performance thresh-
old. In the second one, the heart rate is between the minimum and maximum levels. In
the third one the heart rate is below the minimum. The algorithm automatically finds
the optimal policy for these three states, choosing an action, being this action a set of
values (or a single value) for the knobs.

ALGORITHM 2: SARSA algorithm
Initialize Q(s, a) for all possible s, a pairs
for each step k do
hr ← measured application heart rate
Define the actual state sk based on hr
Use a policy π to select an action ak, in this case the one with highest Q(sk, ak)
Perform ak

Wait for some time and observe sk+1

Compute rk+1

Update Q(sk, ak) according to Equation (20)
end for

Using the standard formulation of the algorithm, presented in Algorithm 2, the Q-
value for a state-action is updated by an error, adjusted by the learning rate α, in
the experiments this parameter is 0.5. The second algorithm parameter is the reward
discount factor γ, set to 0.2. Q-values represent the possible reward received in the next
time step for taking action a in state s, plus the discounted future reward received from
the next state-action observation.

We define a maximum value for the reward rk+1. If the measured heart rate is in
the correct range we reward the pair sk, ak with the maximum value. Otherwise, we
attribute a reward based on the difference between the distance from hr◦ at time k
and at time k + 1, therefore accounting for the evolution. The new value for the Q-
value Q(sk, ak) is the following

Q(sk, ak)← Q(sk, ak) + α[rk+1 + γQ(sk+1, ak+1)−Q(sk, ak)] (20)

and in the implementation the Q-values are randomly initialized to provide some vari-
ability and exploration of the solution space. It can be shown that under certain bound-
ary conditions SARSA will converge to the optimal policy if all state-action pairs are
visited infinitely often. In this example, the algorithm is implemented in such a way
that if two different actions provide the same expected reward for the same state, the
one that guarantees a higher speedup is chosen.

3.5.6. Single actuator reinforcement learning. In this case only the number of cores is con-
sidered as a possible actuator. The system has cmax − cmin possible actions and three
states. The exploration of the solution space should be very fast and the algorithm
should reach a stable point easily, whenever this is possible.
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3.5.7. Multiple actuator reinforcement learning. The algorithm has no conceptual difference
from the previous case, the number of possible actions being all the possible set of
configurations. Intuitively, when the number of actuators increases, the number of
actions is affected exponentially. In this case there are (cmax− cmin)(fmax− fmin)/fstep
possible actions to be taken.

4. EXPERIMENTAL RESULTS
The case studies presented in this paper are application taken from the PARSEC
benchmark suite [Bienia et al. 2008] and instrumented with the Application Heart-
beats framework [Hoffmann et al. 2010]. All experiments are run on a Dell PowerEdge
R410 server with two quad-core Intel Xeon E5530 processors running Linux 2.6.26.
The processors support seven power states with clock frequencies from 2.4 GHz to 1.6
GHz.

4.1. Extended case studies
In this section we show extended case studies, with benchmarks taken from the PAR-
SEC benchmark suite [Bienia 2011].

4.1.1. Swaptions. The swaptions application is a financial software that prices a port-
folio of swaptions. It employs the Monte Carlo simulation method to compute the
prices. The program uses an array to store the prices. As for parallelism, the appli-
cation partitions the array into a number of blocks equal to the number of threads and
assigns one block to every thread. Each thread then iterate over its block.

For our test, we decided to price 500 swaptions with 1000000 simulations each. This
corresponds to the application emitting 500 heart beats over time. As reported in Table
III we set a desired heart rate of 9 beats per second, specifying hrmin equal to 7 and
hrmax equal to 11. Figures 2 and 3 report the test results. In each of the plots (and
also in the following ones for other applications), the x-axis represents the application
progress, expressed in Heart Beats (which could correspond to a measure of time).
Each application is emitting a series of heart beats at non-regular intervals, and the
controller strategies are acting when the application completes a prescribed number
of heart beats, trying to adjust the progress rate of the software, depicted in the y-axis
through the heart rate signal.

Figures 2(a) and 2(b) shows the results of the Heuristic approach. The Heuristic
Based Single actuator (HBS) technique shown in Figure 2(a) is initialized outside the
desired area and is not able to drive the performance signal while the Heuristic Based
Multiple actuators (HBM) approach performs better, according to Figure 2(b), it starts
when the heart rate is in the desired performance range and is able to attain an aver-
age heart rate, however bouncing between the upper region and the lower one.

Figures 2(c) shows the application of the Control Basic Single actuator (CBS) tech-
nique, while Figure 2(d) depicts the results of the Control Basic Multiple actuators
(CBM). As can be seen both these techniques are able to attain the set point with few
oscillations, while the sole workload adaptation fails in obtaining stable performances
as can be noticed in Figure 2(e) for the Control Adaptive Single actuator (CAS) and
Figure 2(f) for the Control Adaptive Multiple actuators (CAM).

Figures 3(a) and 3(b) report the execution of the Model Predictive Controller both
for the Single (CPS) and for the Multiple (CPM) actuation mechanism. As can be seen,
the use of a more complex control technique allows to attain the set point with much
more precision than with simpler control structures.

In figure 3(c) the Machine learning Neural network with a Single actuator (MNS)
results are shown, while Figure 3(d) reports the test with the same mechanism and
multiple actuators (MNM). In the first case, the Neural Network is still learning the
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(a) Heuristic (HBS)
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(b) Heuristic (HBM)
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(c) Control Basic (CBS)
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(d) Control Basic (CBM)
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(e) Control Adaptive (CAS)
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(f) Control Adaptive (CAM)

Fig. 2. Swaptions (part I)

best policy to be used while in the second case, with the frequency contribution, it is
able to attain the set point more precisely.

Figures 3(e) and 3(f) show the SARSA Reinforcement Learning algorithm in the Sin-
gle (MRS) and Multiple actuators (MRM) case. The reinforcement learning algorithm
is still learning the best policy to attain the set point, therefore the results are not
completely satisfactory. However, longer tests usually demonstrate the ability of the
algorithm to learn, the disadvantage being slow convergence.
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(a) Control MPC (CPS)
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(b) Control MPC (CPM)
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(c) Neural Network (MNS)
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(d) Neural Network (MNM)
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(e) SARSA (MRS)
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(f) SARSA (MRM)

Fig. 3. Swaptions (part II)

4.1.2. Vips. The vips benchmark is a software application based on the VASARI im-
age processing system. It includes fundamental image operations such as an affine
transformation and a convolution and constructs multithreaded image processing
pipelines transparently on the fly. The pipeline used for this test has 18 different
stages. In our tests the vips application is supposed to emit 70000 heart beats and
we desire to attain a set point of 2000 heart beats per second, being the acceptable
range between 1500 and 2500 beats. Moreover, in the test, we use the native input
configurations, acting on a 18000× 18000 pixels image.
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(a) Heuristic (HBS)
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(b) Heuristic (HBM)
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(c) Control Basic (CBS)
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(d) Control Basic (CBM)
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(e) Control Adaptive (CAS)
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Fig. 4. Vips (part I)

Notice that vips is way harder to control an application with respect to swaptions,
because the parallelism model is much more complex. In fact, the introduction of a
pipeline and of worker threads makes the control much more difficult. Not all the
threads, in fact, are experiencing the same amount of work and the asymmetry of the
workload affects the application performance.

Figures 4 and 5 show the results of this test and are organized as the swaptions test
case ones. It is noticeable that the heuristic solutions, as well as simple control ones,
fails in stabilizing the application performances. On the contrary, the Adaptive, Predic-
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(a) Control MPC (CPS)
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(b) Control MPC (CPM)
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(c) Neural Network (MNS)
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(d) Neural Network (MNM)
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(e) SARSA (MRS)
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Fig. 5. Vips (part II)

tive controllers and the Neural Networks are able to attain the desired set point, with
some oscillations. The SARSA algorithms, even if they perform better than heuristic
and basic control solutions, are not able to stabilize the heart rate signal, probably due
to changes in the application behavior and therefore to the inability to learn the best
action to be taken for all the possible configurations.

4.1.3. Freqmine. The freqmine application implements an array-based version of the
frequent pattern-growth method for frequent itemset mining. During the first phase,
the application build data structures, it subsequently performs operations on the data

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:22 M. Maggio et al.

Ap
pl

ic
at

io
n 

he
ar

t r
at

e

0

200

400

600

800

1000

Heart Beat
0 50 100 150 200 250 300 350 400 450 500

(a) Heuristic (HBS)

Ap
pl

ic
at

io
n 

he
ar

t r
at

e

0

200

400

600

800

1000

Heart Beat
0 50 100 150 200 250 300 350 400 450 500

(b) Heuristic (HBM)
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(e) Control Adaptive (CAS)
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Fig. 6. Freqmine (part I)

structure and mine the data. In our test case, the application is supposed to use a
database with a collection of 250000 web html documents. The application is instru-
mented to emit a heart beat after processing 500 documents, therefore it emits 500
heart beats.

During the first phase, while data structures are still built, no matter how many
computational resources are given to the application, it will not be able to match the
set point. During the second phase, instead, the application will outperform the re-
quirements even when the least amount of resources. We chose to set the desired value
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(a) Control MPC (CPS)
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(b) Control MPC (CPM)
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(c) Neural Network (MNS)
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(d) Neural Network (MNM)
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(e) SARSA (MRS)
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Fig. 7. Freqmine (part II)

to the average during a free execution with half of the available resources and, expe-
riencing different phases, this application could not match the requirements in any
of its portions. Figures 6 and 7 depict the results of this test and are organized as
the swaptions and vips ones. Every control strategy behaves similarly and fails in as-
signing resources to the application. To obtain better results with this application one
should specify two different set points, corresponding to two feasible values, one per
each phase.
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4.2. Overhead evaluation
The computational overhead of the different techniques was evaluated in the prelim-
inary version of this work [Maggio et al. 2011], however, new techniques were added
in this version of the paper and also the code for previously developed techniques was
greatly improved.

Table II. Overhead results,
seconds to execute the
decision function 1000000
times.

Method Overhead
HBS 0.00
HBM 0.00
CBS 0.02
CBM 0.01
CAS 0.20
CAM 0.21
CPS 1.88
CPM 1.71
MNS 0.01
MNM 0.01
MRS 0.01
MRM 0.03

Therefore Table II reports the seconds necessary to execute 1000000 times the de-
cision function within the code, retrieved with gprof, the heuristic value being zero
since the computation time is lower than one hundredth of a second. Notice, particu-
larly, that the ANN code was improved dramatically by the use of convenient libraries.
Also, as it could have been imagined, the model predictive code requires more time
to be executed, however the code could still produce the required results within each
step.

4.3. Evaluation metrics
To evaluate the goodness of the proposed solutions, we introduce different metrics. As
previously stated, we use hr(k) to refer to the heart rate signal, hr◦ to refer to the
desired value for this signal, being it the average of the two threshold values, i.e.,

hr◦ =
hrmax + hrmin

2
. (21)

Suppose the application emits n heart beats in the controlled interval and denote with
hrmean the mean value of the heart rate experienced,

hrmean =
1
n

n∑
i=1

hr(i). (22)

The first metric we define is Whr, the difference between the mean of the heart rate
signal and the desired value divided by the desired heart rate. As a second metric we
also use the variance of the controlled heart rate Vhr.

Whr =
hr◦ − hrmean

hr◦
Vhr =

1
n

n∑
i=1

[hr(i)− hrmean]2 (23)

Intuitively, one wants the absolute value of Whr as close as possible to zero as well as
the reduction of the variance Vhr.
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Another metric we define is the Integral of the Squared Error (ISE), calcluated as

ISE =
1
n

n∑
i=1

[hr◦ − hr(i)]2 (24)

This metric defines in some sense a measure of the error of the corresponding heart
rate signal. However, for different benchmarks, a high or low number of this value may
mean different things. For example, if the set point hr◦ is less the unity, having an ISE
of two or three means being very far from controlling the application behavior. If the
same ISE is experienced when the set point is a thousand, the same value means con-
trolling the application perfectly. Therefore we propose also a weighted value (ISEw),
defined as

ISEw =
1
n

n∑
i=1

[
hr◦ − hr(i)

hr◦

]2

. (25)

This two measures combined gives a metric of how much the heart rate signal is close
to its set point. One could also introduce a timed variant of the ISE, namely the ISTE,
weighting the error over time, therefore lowering the pressure of the initial transient
phase. This metric, although it could be useful, would result in better values for control
theoretical solution, where the transient phase is the price to pay for modeling and
controlling the system. However, this metric would not result in different information,
therefore we omit these values in the following.

Another important metric is the percentage of recorded points that are in the unde-
sired area, denoted by %wdp and defined as

%wdp =
1
n

[
n−

n∑
i=1

Ihrmin<hr(i)<hrmax

]
(26)

where Ihrmin<hr(i)<hrmax
is the Borel set for the considered area, i.e., a function that

equals to 1 if hr(i) is in the chosen interval and to 0 otherwise.
The last metric, ewdp, shows the sum of the absolute values of the distances from the

closest treshold for the data points that are outside the valid range

ewdp =
1
n

n∑
i=1

[
Ihr(i)<hrmin

|hr(i)− hrmin|+ Ihr(i)>hrmax
|hr(i)− hrmax|

]
(27)

showing therefore an idea of the experienced distances between the thresholds.

4.4. PARSECs aggregate
Similar tests with respect to the extended ones just proposed are conducted with all the
PARSEC benchmarks. The applications set point and threshold values can be found in
Table III and were obtained by analyzing the maximum performance value obtained
on the target machine and the minimum one. An average between the two was chosen
so the decision making system should choose to use an average value of resources with
respect to the machine capabilities.

Instead of reporting plots for all the conducted tests, the performance metrics pro-
posed in Section 4.3 are calculated after 30 executions of each test and averaged. The
complete result set is reported in Appendix A, while some synthetic comments follow.
Basically, applications (except one) can be divided in two groups.

— Group 1 (bodytrack, dedup, facesim, fluidanimate, raytrace, streamcluster and
swaptions) is composed by applications for which all the considered methods pro-
duce more or less comparable results. In fact, their response to resource allocation is
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Table III. Experimental setup

benchmark hr◦ hrmin hrmax

blackscholes 35 30 40
bodytrack 3 2.5 3.5
canneal 1500 1000 2000
dedup 35 30 40
facesim 0.3 0.2 0.4
ferret 30 25 35
fluidanimate 3 2.5 3.5
freqmine 125 100 150
raytrace 1.75 1.5 2
streamcluster 0.4 0.3 0.5
swaptions 9 7 11
vips 2000 1500 2500
x264 7.5 5 10

quite uniform within their run. In this case simpler the decision making method are
preferable because of their computational lightness.

— Group 2 (blackscholes, canneal, ferret, vips, x264) on the contrary requires adap-
tation owing to application response variability. In some of this cases, any adaptive
technique is more or less equivalent, while others (canneal, ferret, vips) exhibit a
particularly vast or complex search space, resulting in generally better performance
of control-based methods.

We take the results of bodytrack, in Group 1, as a representative example. Table IV
shows that the almost all the techniques are able to guarantee that the average heart
rate of the application is close to the desired value, in most cases with a small variance.
At the same time, the percentage of data points that are outside the prescribed region
reveals that techniques that do not resort to exploration converge faster to the desired
value. Similar results can be observed for other Group 1 applications in Appendix A.1.

Table IV. Bodytrack results

Whr Vhr ISE ISEw %wdp ewdp

HBS 0.43 0.34 2.24 0.25 56 0.78
HBM 0.16 0.72 0.86 0.10 32 0.28
CBS −0.03 0.01 0.01 0.00 00 0.00
CBM 0.06 0.09 0.11 0.01 00 0.00
CAS 0.05 0.46 0.41 0.05 16 0.15
CAM 0.00 0.07 0.06 0.01 00 0.00
CPS 0.08 1.80 1.58 0.18 71 0.63
CPM 0.25 1.62 1.89 0.21 58 0.68
MNS 0.31 0.24 1.27 0.14 68 0.51
MNM 0.35 0.45 1.49 0.17 62 0.61
MRS −0.14 0.46 0.55 0.06 71 0.23
MRM −0.10 0.18 0.25 0.03 39 0.07

Correspondingly, we show the results for blackscholes as an example of a Group 2
application. Table V depicts the situation. Also in this case, the average heart rate is
close to its desired value, however the signal presents much more variance, and this
reflects also in performance indices like ISE and ISEw. Each of the techniques has
a percentage of data points outside the desired interval that is way higher than in
easier application cases, however some techniques achieve smaller errors than others.
Similar data can be noticed for other applications in Appendix A.2.

Table VI shows the data for the only exception, freqmine. None of the considered
techniques is satisfactory in this case. A reason for that can however be identified in
the different phases which this application experiences. There is a phase that rapidly
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Table V. Blackscholes results

Whr Vhr ISE ISEw %wdp ewdp

HBS −0.54 135.01 852.74 0.70 81 20.50
HBM −0.07 254.60 240.58 0.20 52 8.06
CBS −0.09 487.98 454.00 0.37 88 14.91
CBM −0.24 809.23 787.03 0.64 84 19.22
CAS 0.01 62.79 57.56 0.05 14 1.55
CAM 0.18 159.43 242.46 0.20 34 6.51
CPS −0.24 287.39 318.69 0.26 70 10.14
CPM −0.25 138.64 207.43 0.17 70 7.59
MNS 0.41 43.38 326.83 0.27 82 10.84
MNM 0.31 54.75 187.65 0.15 74 7.25
MRS −0.44 485.98 645.47 0.53 83 16.68
MRM −0.11 236.91 229.03 0.19 80 8.68

produces heart beats and one which is extremely slow. In the slow phase the appli-
cation is significantly slower than the average heart rate with maximum resources,
while in the fast phase it is above the requirements.

Table VI. Freqmine results

Whr Vhr ISE ISEw %wdp ewdp

HBS −53.22 1564679751.32 1173213595.19 75085.67 37 3316.41
HBM −0.02 6617.95 9.12 0.00 00 0.00
CBS −3.81 373958.30 256142.17 16.39 42 227.07
CBM −1.34 40851.17 9726.01 0.62 32 47.92
CAS −2.70 107492.15 41321.61 2.64 32 104.55
CAM −1.44 46672.34 12953.25 0.83 29 52.80
CPS −3.33 326798.73 222229.47 14.22 39 196.55
CPM −0.50 16583.49 1395.50 0.09 31 12.94
MNS −52.86 1536282954.83 1152012087.25 73728.77 43 3292.11
MNM −0.48 15656.18 1316.77 0.08 32 12.07
MRS −4.12 131459.58 101024.14 6.47 33 163.50
MRM −5.12 295051.91 199100.27 12.74 33 204.88

5. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a comparison of some state-of-the-art techniques for build-
ing decision making mechanisms in autonomic computing systems. The Application
Heartbeats framework was used to provide the necessary sensors to develop differ-
ent solutions, spanning from machine learning techniques to heuristic and control-
theoretical systems.

We focused on decisions related to the problem of self-optimization, where for an ap-
plication a range of desired operating conditions is defined, and the decision making
mechanism needs to provide the necessary resources (and possibly no more) to meet
the requirements. A single case study was shown in detail with all the proposed tech-
niques, to allow a meaningful comparison, and some numerical data are proposed as
well as plots depicting the behavior of the system. This case study is chosen among the
tests conducted with all the PARSEC benchmark applications, for which some aggre-
gate results are provided.

Some conclusions can be drawn from the experiments. First, instrumentation is cru-
cial and whenever an application cannot be instrumented in a sensible manner, there
is simple no way out. Second, the relative performance of the various techniques is in-
fluenced by application variability in quite predictable a way. In other words, forecasts
on the application variability can easily be turn into choices of the most appropriate
techniques. Third, the same remark above applies to different extents depending on
how many and which actuators have the most significant influence on the application.
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When these are more than one, techniques that in some sense resort to a space search,
suffer significantly if not properly initialized. Fourth, and last, the control-based meth-
ods deserve being considered as viable alternatives to more often used ones. In fact,
they invariantly perform comparably with all the other techniques, sometimes slightly
worse but usually better. To summarize, our results indicate that the best decision
method can vary depending on the specific application to be optimized; however, adap-
tive and model predictive control systems tend to produce good performance and may
work best when the applications to be controlled are a priori unknown.
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A. FURTHER EXPERIMENTAL RESULTS
A.1. Group 1 applications
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Table VII. Dedup results

Whr Vhr ISE ISEw %wdp ewdp

HBS 0.05 31.01 29.47 0.02 34 1.11
HBM 0.09 23.59 32.83 0.03 37 1.32
CBS 0.02 47.19 40.48 0.03 30 1.55
CBM 0.06 41.69 39.84 0.03 38 1.52
CAS 0.20 23.35 75.76 0.06 62 3.37
CAM 0.17 22.80 90.52 0.07 50 3.82
CPS −0.07 68.63 63.56 0.05 43 2.17
CPM −0.01 42.13 46.05 0.04 48 1.85
MNS 0.15 29.75 54.95 0.04 51 2.35
MNM 0.05 52.88 49.10 0.04 48 2.04
MRS 0.02 52.62 44.46 0.04 44 1.77
MRM 0.15 38.40 58.23 0.05 46 2.30

Table VIII. Facesim results

Whr Vhr ISE ISEw %wdp ewdp

HBS 0.17 0.00 0.00 0.03 00 0.00
HBM 0.17 0.00 0.00 0.03 00 0.00
CBS 0.04 0.00 0.00 0.00 00 0.00
CBM 0.07 0.00 0.00 0.01 00 0.00
CAS −0.00 0.00 0.00 0.01 02 0.00
CAM 0.00 0.00 0.00 0.00 00 0.00
CPS 0.03 0.02 0.02 0.22 66 0.05
CPM 0.14 0.01 0.01 0.13 33 0.02
MNS −0.06 0.00 0.01 0.11 33 0.02
MNM −0.04 0.01 0.01 0.17 29 0.03
MRS 0.03 0.01 0.01 0.06 10 0.01
MRM 0.14 0.01 0.02 0.18 49 0.03

Table IX. Fluidanimate results

Whr Vhr ISE ISEw %wdp ewdp

HBS −0.01 0.01 0.05 0.01 00 0.00
HBM 0.09 0.30 0.37 0.04 10 0.13
CBS −0.01 0.20 0.18 0.02 23 0.01
CBM 0.02 0.06 0.06 0.01 07 0.03
CAS 0.03 0.01 0.01 0.00 00 0.00
CAM 0.01 0.02 0.02 0.00 03 0.01
CPS 0.07 0.18 0.21 0.02 22 0.10
CPM 0.12 0.37 0.47 0.05 27 0.21
MNS 0.33 0.12 1.57 0.17 78 0.52
MNM 0.28 0.22 1.01 0.11 68 0.45
MRS 0.21 0.52 0.88 0.10 37 0.36
MRM 0.24 0.33 0.82 0.09 49 0.28

Table X. Raytrace results

Whr Vhr ISE ISEw %wdp ewdp

HBS 0.05 0.00 0.01 0.00 00 0.00
HBM 0.22 0.76 0.88 0.29 81 0.56
CBS 0.02 0.00 0.00 0.00 00 0.00
CBM 0.04 0.01 0.02 0.01 11 0.01
CAS −0.01 0.02 0.02 0.01 03 0.01
CAM 0.00 0.00 0.00 0.00 01 0.00
CPS 0.04 0.00 0.01 0.00 00 0.00
CPM 0.12 0.03 0.07 0.02 37 0.06
MNS 0.25 0.04 0.57 0.18 86 0.38
MNM 0.30 0.15 0.59 0.19 84 0.42
MRS −0.22 0.70 0.82 0.27 87 0.55
MRM 0.06 0.27 0.29 0.09 56 0.21
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Table XI. Streamcluster results

Whr Vhr ISE ISEw %wdp ewdp

HBS 0.08 0.00 0.00 0.02 03 0.00
HBM −0.06 0.00 0.00 0.01 02 0.00
CBS −0.00 0.00 0.00 0.01 02 0.00
CBM −0.01 0.00 0.00 0.00 02 0.00
CAS 0.01 0.00 0.00 0.02 05 0.00
CAM −0.01 0.00 0.00 0.01 02 0.00
CPS 0.05 0.01 0.01 0.06 30 0.02
CPM 0.11 0.01 0.01 0.07 27 0.02
MNS 0.12 0.00 0.01 0.05 18 0.02
MNM 0.08 0.01 0.01 0.06 35 0.01
MRS −0.14 0.01 0.01 0.06 44 0.01
MRM 0.10 0.01 0.01 0.06 27 0.02

Table XII. Swaptions results

Whr Vhr ISE ISEw %wdp ewdp

HBS −0.05 1.32 1.53 0.02 11 0.03
HBM 0.03 11.28 11.62 0.14 37 1.18
CBS 0.01 2.77 2.58 0.03 21 0.22
CBM 0.02 2.29 2.17 0.03 07 0.14
CAS 0.02 2.32 2.21 0.03 08 0.17
CAM 0.04 2.90 3.06 0.04 11 0.24
CPS 0.17 2.89 14.95 0.18 63 1.59
CPM 0.27 3.20 15.04 0.19 68 1.60
MNS 0.22 4.33 13.10 0.16 82 1.42
MNM 0.39 5.44 17.95 0.22 75 2.01
MRS −0.32 14.60 21.43 0.26 70 2.08
MRM −0.01 9.40 9.03 0.11 50 0.94
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A.2. Group 2 applications

Table XIII. Canneal results

Whr Vhr ISE ISEw %wdp ewdp

HBS 0.34 83906.90 355386.15 0.16 51 155.00
HBM 0.58 34864.17 838724.26 0.37 81 403.98
CBS 0.34 224284.40 464799.07 0.21 44 204.61
CBM 0.32 194318.58 433495.87 0.19 43 192.13
CAS 0.32 163993.19 351597.04 0.16 33 145.79
CAM 0.38 118444.15 461262.29 0.21 61 206.05
CPS 0.38 131509.65 426132.72 0.19 59 184.02
CPM 0.54 7100.69 611676.49 0.27 91 287.40
MNS 0.64 29260.14 960332.67 0.43 87 458.74
MNM 0.50 9268.43 664617.59 0.30 74 326.64
MRS 0.56 75129.34 742520.11 0.33 83 345.66
MRM 0.63 61458.83 881605.82 0.39 89 421.25

Table XIV. Ferret results

Whr Vhr ISE ISEw %wdp ewdp

HBS 0.01 29.54 28.86 0.03 34 1.05
HBM 0.17 75.07 102.63 0.11 50 3.89
CBS 0.01 158.81 153.90 0.17 67 5.83
CBM 0.00 130.94 126.69 0.14 62 4.75
CAS 0.03 34.02 33.86 0.04 33 1.15
CAM 0.06 77.49 82.07 0.09 45 2.85
CPS 0.35 26.90 231.66 0.26 71 8.40
CPM 0.33 27.59 211.76 0.24 75 7.82
MNS 0.38 21.91 236.84 0.26 83 8.75
MNM 0.25 43.54 151.88 0.17 72 6.03
MRS 0.05 130.89 133.63 0.15 64 5.09
MRM 0.32 72.92 164.51 0.18 77 6.39

Table XV. Vips results

Whr Vhr ISE ISEw %wdp ewdp

HBS 0.02 43180.78 52376.11 0.01 03 11.76
HBM 0.17 873194.48 969351.91 0.24 58 397.94
CBS −0.09 2617141.79 2484345.27 0.62 83 1000.66
CBM −0.07 3181852.63 2994589.71 0.75 92 1185.84
CAS −0.00 185821.37 174458.05 0.04 12 57.89
CAM 0.02 240614.75 234980.99 0.06 15 80.35
CPS −0.01 256104.65 262467.32 0.07 22 98.58
CPM 0.03 212973.40 237492.31 0.06 20 81.94
MNS 0.26 104406.37 780818.20 0.20 61 322.32
MNM 0.39 140940.37 953911.96 0.24 68 409.97
MRS −0.11 1216227.14 1177390.02 0.29 66 490.34
MRM 0.25 560755.47 781699.95 0.20 55 330.31
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Table XVI. X264 results

Whr Vhr ISE ISEw %wdp ewdp

HBS −0.00 30.27 30.33 0.54 19 0.76
HBM −0.05 29.90 29.61 0.53 20 1.04
CBS −0.04 7.70 7.81 0.14 20 0.52
CBM −0.02 11.52 11.32 0.20 19 0.65
CAS 0.05 7.38 7.44 0.13 17 0.46
CAM 0.00 10.42 10.20 0.18 21 0.62
CPS −0.01 24.15 24.77 0.44 29 0.93
CPM −0.01 440.74 441.31 7.85 28 1.39
MNS −0.05 28.28 28.94 0.51 29 1.36
MNM −0.01 14.07 14.21 0.25 26 0.70
MRS −0.10 19.41 19.66 0.35 24 1.15
MRM −0.10 21.55 21.59 0.38 25 1.16
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