
Function Inlining in Modelica Models

Alessandro V. Papadopoulos ∗ Martina Maggio ∗∗

Francesco Casella ∗ Johan Åkesson ∗∗,∗∗∗

∗ Politecnico di Milano, Dipartimento di Elettronica e Informazione,
Via Ponzio 34/5, 20133 Milano, Italy

(e-mail: {papadopoulos,maggio,casella}@elet.polimi.it).
∗∗ Lund University, Department of Automatic Control,

Ole Römers väg 1, SE 223 63 Lund, Sweden
(email: johan.akesson@control.lth.se).

∗∗∗ Modelon AB, Lund, Sweden
(e-mail: johan.akesson@modelon.com).

Abstract: The equation-based Modelica language allows the modeller to specify custom
functions. The body of a function is an algorithm that contains procedural code to be executed
when the function is called. This language feature is useful for many applications; however,
the insertion of a function often prevent model optimizations that require the model to be
formulated in purely declarative form by equations only. This paper discusses several non-trivial
cases in which the function call and the corresponding algorithmic code can be transformed into
an equivalent purely equation-based model, thus allowing further optimization. The inlining
algorithms presented in the paper go well beyond the state of the art in commercial and open-
source Modelica tools.

Keywords: Function inlining, Symbolic manipulation, Object-Oriented Modelling.

1. INTRODUCTION

Equation-based, Object-Oriented Modelling Languages
(EOOMLs) are increasingly being used for the modelling
of complex dynamical systems. The key idea of EOOMLs
is to describe systems declaratively in terms of differential-
algebraic equations, which can then be symbolically pro-
cessed to bring them in a form suitable for efficient so-
lution. Among these languages, Modelica (Fritzson, 2003;
Mattsson et al., 1998) has received much attention, both
from an academic and from an industrial perspective.

A notable feature of Modelica, which is lacking in most
other EOOMLs, is the possibility to define custom func-
tions, beyond the built-in mathematical functions such
as sin() or exp(). Informally (see The Modelica Associ-
ation (2010) for details), Modelica functions are defined
by declaring the input variables, the output variables,
optional local protected variables, and an algorithm to
compute the protected and output variables from the
inputs. The algorithm is written using statements typ-
ical of procedural programming languages: assignments,
conditional statements, loops. A Modelica model using
such functions has therefore a mixed semantics, in part
declarative and in part procedural.

This approach is convenient in many applications, where
parts of the model are better described in a procedural
way; for example, consider the model of a vehicle running
on a test track, whose shape in 3D space is described by
a suitable algorithm. On the other hand, many symbolic
analysis and optimization techniques which are commonly
used in EOOLMs require the model to be formulated in
terms of equations only: symbolic differentiation, symbolic

index reduction, symbolic solution of implicit equations,
handling of overconstrained connection equations, and so
forth. Furthermore, there might be cases (e.g., optimiza-
tion applications) in which the Modelica model needs
to be translated into some other intermediate modelling
language which is purely equation-based and does not
allow to define custom functions, e.g., AMPL. It is then
worth investigating how and to which extent a Modelica
model using custom functions can be transformed into an
equivalent one using only equations.

In the context of programming languages, a technique
named inlining is often used by optimizing compilers,
which substitute the call to a function in the code with a
suitably adapted copy of the function body; this eliminates
the overhead of a function call at the expense of an
increased memory usage. Similar techniques can be devised
in the context of EOOML, though the task is made harder
by the fact that the body of a function algorithm is
procedural, while the rest of the code is declarative.

In fact, the concept of inlining is well-known in the Mod-
elica community, to the point that some parts of the Mod-
elica Standard Library (e.g., the Multibody and Media li-
braries) can only be dealt with efficiently if some functions
are inlined. Surprisingly, to the authors’ knowledge, there
is no published paper or technical document that clearly
explains how inlining should be performed. Experimental
evidence demonstrates that the Dymola tool inlines func-
tions only in the special case when the function has no
protected variables and the algorithm is given by a single
assignment computing the output as an expression using
the inputs. In this case inlining is trivial: it is sufficient
to replace the function call with the right-hand-side of the

assignment, changing the formal input variable names into
the actual names. All functions in the Modelica Standard
Library that need to be inlined belong to this special class,
even though this requirement is not explicitly stated.

The goal of this paper is then to outline algorithms to
transform Modelica models using custom-defined func-
tions into purely equation-based models, going beyond
the current state of the art. The proposed techniques will
be demonstrated by a prototype implementation in the
JModelica.org 1 platform.

2. OPTIMIZATIONS

It is worth stressing the aim of the proposed translation.
The starting point is a model that contains equations and
one or more function calls. The aim of this procedure
is to obtain another model, the semantic of which is
equivalent to the initial one. This second model contains
only equations, if possible.

2.1 Assignments

Algorithm 1 Equation translation algorithm

Require: Ordered list of assignments A
Ensure: Set of equations E

// Initialisation of the sets of translated equations,
visited assigned variables and used labels
E ← ∅
V ← ∅
L← ∅
for all i = A(last) to A(first) do

// LHS(i) and RHS(i) return respectively the left- and
right-hand-side of the i-th assignment
V ← V + {LHS(i)}
if LHS(i) ⊆ RHS(i) then

// The variable on the LHS is present on the RHS
L ← L + {available(E,LHS(i))} // Append the
LHS(i) marked with the first available label

else
L← L + {LHS(i)}

end if
// Substitutes in the RHS all the elements of V with
the corresponding labelled element in L
substitute(RHS(i),V,L);
// Substitutes in the LHS of the assignments before
the current one the labelled variables
for all j ∈ A ∧A(j) < A(i) do

substitute(A(j),V,L);
end for
E ← E + {LHS(i) = RHS(i)}

end for
return E

First, we consider the special case of a model containing
a single function, composed from assignments only. This
may seem a trivial case and it is in fact the easiest one
to be translated. However, other cases can be reduced to
this one, and therefore this procedure is at the heart of
the proposed optimisation. As an example, consider the
following code.

1 www.jmodelica.org

1 function f
2 input Real x ;
3 output Real z ;
4 protected
5 Real y ;
6 algorithm
7 z := y ;
8 y := x ;
9 y := yˆ2;

10 z := z+y+x ;
11 end f ;

Inlining this function into a model that contains a function
call to it is straightforward. Whenever the function call
occurs, the value of the uninitialized variables (in the
example y) is undefined and a warning should be shown
to the user, since the Modelica language specification does
not specify how to handle this case. In the following, we
conventionally assign the value zero to all the uninitialised
variables.

Furthermore, input and output arguments (in the example
x and z respectively) could be assigned multiple times
within the function code, i.e., they can appear in the
left-hand-side of assignment statements more than once
in an algorithm. As a consequence, dummy variables
need to be introduced. A procedure to translate a set
of assignments into a correspondent set of equations is
proposed in Algorithm 1. Starting from the end of the
function, a new label is introduced every time a variable
that was already assigned is found in the right-hand-side
of an assignment and every statement of the algorithm
is translated into the corresponding equation. Note also
that dummy variables need to be given names that do
not conflict with existing variable names in the model
containing the function call. Translating the function code
provides the following set of equations

y2 = 0; z1 = y2; y1 = x;

y = y21 ; z = z1 + y + x.
(1)

2.2 Loops

In non-trivial cases, a function is not only composed from
assignments, but also contains control flow statements.
This introduces additional complexity in the translation
and in some cases makes the complete inlining into an
equation model impossible. A procedure to handle some
special cases of loops is outlined in this section.

Loop unrolling is a well-known compiler optimisation tech-
nique (Petersen and Arbenz, 2004; Sarkar, 2001), which is
used at compile time to reduce the program’s execution
speed at the expense of the its binary size. In the context
of modelling languages, however, this technique can be
exploited to translate a loop into a set of assignments, and
then into equations with Algorithm 1. Some limitations
apply, however. We assume, for the purpose of this work,
that the values of the loop iterators can be computed at
compile time. More complex solutions may be considered
but they would stray from the scope of this work. Suppose,
therefore, that a for loop contains only assignments and
assume that the iterator range is known at compile time.
Then, for loops like

1 for i in 1:10 loop

2 for i in 1 .0:1 .5:5 .5 loop
3 for i in {1 ,3 ,6 ,7} loop

can be unrolled, and thereby translating them into a set
of assignments. This is done by writing every instruction
of the loop explicitly for each iteration. Consider, for
example, the case of an array initialisation

1 for i in 1:4 loop
2 a[i] := i ˆ2;
3 end for ;

The resulting set of assignments is

a 1 := 1; a 2 := 4; a 3 := 9; a 4 := 16;

where all the elements of the array involved in the loop are
treated as scalars and the loop itself is split into a set of
assignments, which can then be handled by Algorithm 1 to
produce the corresponding set of equations. In the case of
nested loops, the procedure must be applied starting from
the innermost loop towards the outermost one.

The case of implicit iteration ranges can be treated in the
same way. For example, the loop

1 Real x[4] ;
2 Real xsquared[:] := {x[i]*x[i] for i } ;

can be rewritten in an equivalent for loop like

1 Real x[4] ;
2 Real xsquared[4] ;
3 for i in 1:4 loop
4 xsquared[i] := x[i]*x[i] ;
5 end for ;

and then loop unrolling (as previously described) can be
applied. The concept of dynamic loop unrolling also exists,
but it requires a Just In Time compiler which can compute
at run-time the values of the iterators.

Addressing while loops is more difficult. In fact, the con-
dition to exit the loop usually depends on some variables
assigned inside the loop code. This is for example the case
whenever accuracy is a target (continue the loop execution
until the error becomes smaller than a threshold value).

1 while err>errMax loop
2 . . .
3 end while

It is not possible to a priori know how many times the
loop will be executed. Nevertheless, the while statement
can always be translated in terms of for loops and
if statements. Hence, solving the problem of the if
statement (treated in the next section) and limiting to
the condition proposed in the for loop case, will lead to
the solution of the while statement case.

2.3 If statements

The if statement is the most difficult statement to be
treated and imposes limitations on which functions can
be inlined. These limitations depend on the possibility

of translating the corresponding guard condition into a
“sign” expression. To explain the concepts more clearly,
we present some examples. The main assumption is that
the expressions used as guards can be used inside the
assignment as operands, and assume boolean values. In
a C-like way, the boolean values true and false are
mapped respectively into 1 and 0. Consider, for instance,
the following program

1 Real w, y , z ;
2 . . .
3 // Last assignments of the var iables involved in the

i f statement
4 w := 3;
5 y := 10;
6 z := 15;
7 i f a>b then
8 y := 3;
9 z := 5;

10 else
11 z := 6;
12 w := 4;
13 end i f

The run-time if branch is necessarily not known at compile
time. However, we can write it in the form of assignments
as follows.

1 w := 3 + i f a > b then 0 else 1;
2 y := 10 + i f a > b then -7 else 0;
3 z := 15 + i f a > b then -10 else -9;

In other words, we could consider what happens to the
variables in the diverse branches and write that in form of
variation assignments, where each variation is multiplied
by a zero or a one, depending on the branch condition to
be false or true. For each single variable contained in the
if statement an assignment is produced in the form:

var := initial_value +
(if_condition)*(if_transformations) +
(else_condition)*(else_transformations);

Generalizing, an if statement containing only assignments

1 x := x0 ;
2 . . .
3 i f cond1 then
4 x := x1 ;
5 . . .
6 elsei f cond2 then
7 x := x2 ;
8 . . .
9 elsei f . . . then

10 . . .
11 else
12 x := xn1 ;
13 . . .
14 end i f ;

supposing we are able to translate the conditions as
proposed, can be translated into the following assignment

x := x0 + (x1-x0)(cond1) +
(x2-x0)(not(cond1)(cond2)) + ...
+(xn1-x0)(not(cond1) not(cond2)... not(condn))

2.4 Nested functions

Functions that contains calls to other functions can be
handled within our framework, assuming that the condi-
tions for loop unrolling stated in Section 2.2 are satisfied
whenever a loop is encountered in the callee and called
functions. In such cases, the translation proceeds a two
step process. First, using the “classical” inlining approach
(von Hagen and Wall, 2006), all the called functions are
inlined into the callee(s). To this extent, every variable
name is modified by adding a prefix to identify the function
it was belonging to, in order to avoid duplicates. When
only the single callee function remains, it could be treated
using Algorithm 1.

3. CONCLUSIONS AND FUTURE WORK

In this work we proposed the rules for translating a
function call into a set of equations used to complement
the existing equation model that executed the function
call. We overcame some of the previous limitations and
evidenced some restriction to the mentioned approach at
the same time. The translation could be implemented as
a compile function to be called before the optimization of
the equation set.

An implementation of the work is under development for
the JModelica compiler. The implementation has been
tested for a subset of the presented functionalities and
preserve the model correctness. Optimal control problems
where Modelica code is exported to XML format and then
in turn imported into the CasADi (Anderson et al., 2010)
package for efficient solution will be used in the future
research.

REFERENCES

Anderson, J., Houska, B., , and Diehl, M. (2010). Towards
a computer algebra system with automatic differentia-
tion for use with object-oriented modelling. In Third
International Workshop on Equation-based Object-
oriented Modeling Languages and Tools - EOOLT 2010.

Fritzson, P. (2003). Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley.

Mattsson, S.E., Elmqvist, H., and Otter, M. (1998). Phys-
ical system modeling with Modelica. Control Engineer-
ing Practice, 6(4), 501–510.

Petersen, W. and Arbenz, P. (2004). Introduction to
parallel computing. Oxford University Press, USA.

Sarkar, V. (2001). Optimized unrolling of nested
loops. International Journal of Parallel Programming,
29, 545–581. URL http://dx.doi.org/10.1023/A:
1012246031671.

The Modelica Association (2010). Modelica - A unified
object-oriented language for physical systems modeling
- Language specification version 3.2. Online. URL
https://www.modelica.org/news_items/documents/
ModelicaSpec32.pdf. URL: https://www.modelica.
org/news_items/documents/ModelicaSpec32.pdf.

von Hagen, W. and Wall, K. (2006). The Definitive Guide
to GCC. Apress, Berkeley, CA, USA, second edition.

