
SMART Computing Systems: Sensing, Modelling,
Actuating, Regulating, and Tuning

Martina Maggio1, Alessandro V. Papadopoulos1,2 and Alberto Leva2

1Department of Automatic Control
Lund University, Sweden

{martina.maggio,alessandro.papadopoulos}@control.lth.se

2Dipartimento di Elettronica e Informazione
Politecnico di Milano, Italy

{papadopoulos,leva}@elet.polimi.it

ABSTRACT
Control-based decision mechanisms are nowadays exploited
as a viable tool to obtain reliability and adaptivity in com-
plex computing systems. However, due to the complexity
of these systems, a lot of effort is often devoted to figuring
out what strategy is the best fit for the problem. This leads
to ad hoc solutions that are perfect for a specific issue but
are not keen to be reused. In this position paper, some rea-
soning is presented on one approach that can be followed
when dealing with a control problem in complex computing
systems. The framework is named SMART, which stands
for Sensing, Modelling, Actuating, Regulating and Tuning.
The considerations discussed herein come from experiences
with feedback scheduling and feedback “application-aware”
resource allocation. Relevant case studies are referenced for
the interested reader.

Categories and Subject Descriptors
D.2.10 [Design]: Methodologies; I.2.8 [Problem Solving,
Control Methods, and Search]: Control theory

General Terms
Design, Performance

Keywords
Resource allocation, Feedback control, Design approaches

1. INTRODUCTION
In recent years, a significant convergence can be observed be-
tween the need for“self adaptation”capabilities, strongly ev-
idenced in the computer science community, and the possible
responses coming from methodologies developed in the con-
trol domain [4]. Examples where controllers are introduced
to close loops in computing systems can be found in various
research areas, however general solutions and design frame-
works are hard to find. A few exceptions are [5,10]. The idea
behind this paper is to investigate the general methodology
to build “controllable” computing systems, a matter that of-
ten requires redesigning part of the system. The methodol-
ogy that will be presented in the following can be applied to
a lot of different problems. In some of them this approach
has already been applied, for example task scheduling [7]
and application-aware resource allocation [9]. In this latter

case, one may think about designing an application specific
allocator, however, the goal is to be as general as possible
and a strong theory is required to pursue this objective.

To further motivate the need for generality, it is worth ev-
idencing where it is usually missing. The first place is the
“sensing” part of the computing/control system, as most
available solutions in fact rely on architecture-specific perfor-
mance measurements. Think for example to a specific web
server controller that measures the number of users that are
active in the system or the number of connections that are
kept alive. The type of measures that are obtained from that
are definitely application specific and are not suitable for
another class of applications, say multimedia manipulators.
Also, one could think about reading an operating system
value in a Unix environment or in a different one. Often,
these operations are done with different functions and not
necessarily the same information is available in both cases.
This leads to fragility and jeopardises portability to other
systems, if not even the capability of correctly quantifying
the required metrics. To justify this claim, think about the
case when the progress of an application towards its goal is
to be evaluated. In such a scenario, measuring the number
of instructions executed in a period of time does not tell
whether those instructions were doing useful work or just
spinning on a lock. Similarly, measuring CPU utilisation or
cache miss rates has drawbacks and does not allow for gen-
eralisation.
The second place is the “actuation” part. Also in this case,
most solutions are hand-crafted for a particular computing
platform, and exert their actions on the phenomenon to be
controlled with an extremely wide variety of mechanisms,
from hardware-based timing to system calls, and more. One
example could be dropping connections in a web server, that
is not portable to other platforms or class of applications.
The clarify, the claim here is that it should be possible to
generalise all these specific solutions, without losing the ben-
efits of their level of detail. Abstraction is needed to deal
with actuators and is required to cast different knobs into a
unitary method.
The third place is the “modelling” of the mentioned core
phenomenon. Also here, available solutions seem to be more
related to the application-specific sensing and actuation poli-



cies than to a methodologically grounded description. As a
consequence, the design of the control law is far from being
easy. Often, this design requires black box modelling, which
means treating the system as an unknown cloud of dust that
needs to be sorted in some sense. Almost the totality of the
contributions are tied to specific problems and not keen to
solution reuse, examples being [1–3,6]. On the contrary, the
proposed framework inherently fosters a structured, unitary,
and reusable control system design. Intuitively, this can lead
to worse performance in specific solutions where a specifi-
cally designed strategy is able to perform better. However,
when generalisation is needed, following the framework al-
lows for great advantages.

2. THE SMART DESIGN FRAMEWORK
SMART originates from the idea of building components
of computing systems as controllers. In such a way, one
does not need to make “adaptive” an existing component
but simply designs the component itself as a controller. A
clear example is a scheduler that is made self-adaptive by
choosing the parameter of a policy, for example the quantum
of a round robin. One could do that and try to formally
assess the behaviour of the system, proving stability and
some convergence properties. However, replacing the entire
scheduler with a controller, modelled in terms of equations,
allow to obtain much more in terms of formal guarantees.
This is in general true in the case of resource allocators, that
are inherently “controllers” in nature.

Actuating

app

Sensing

pa

...

x(k + 1) = f (x(k), u(k))

Modelling

Regulating & Tuning

Figure 1: The SMART Framework.

Figure 1 shows the rationale of SMART, which is a clear di-
vision of the system components in “sensing, modelling and
actuating” ones, to separate the problems as much as possi-
ble. As can be seen, the figure represents an application that
is received some amount of resources. Noticing that the pic-
ture is completely general, for simplicity it is now cast into
a specific application case. Suppose, in fact, that the blue
resource is CPU time, the red resource is memory pages and
the green resource is disk space. During its life, the applica-
tion will require different amounts of these resources that are
managed by knobs or actuators. The interfaces, depicted by
blocks filled a with north west lines pattern, transform the
behaviour of the application into some performance mea-
sure pa and the action chosen by a regulator into operating
system resource quantities, such as memory and disk space.

Moreover, modelling is necessary to define the “expected
relationship” between the actuator values and the perfor-
mance measure. Grey box macro models are here used to
capture the controlled phenomena without including unnec-
essary system parts. By unnecessary we here mean those
parts that can be excluded from the original system when the
control components are redesigned. Recalling the scheduler
example, the controller with adaptive parameters is some
part that the designer can get rid of if the scheduler is now
designed as a feedback controller from the very beginning.
No adaptation is required in this case, since the adaptation
mechanism is the nature of the controller itself. If this mod-
elling phase is carried out thoroughly, the “M” part - i.e., the
model to be used for designing the control law - quite often
turns out to be very simple.

Starting from the model – and not needing the interfaces
anymore, therefore decoupling the two phases – a controller
can be designed, using methods that are suitable for the
specific problem. For example, a deadbeat controller can
be used whenever a fast response is needed and disturbance
rejection is not of primary importance. Similarly, a propor-
tional integral controller can be implied when the steady
state error should be driven to zero and a model predictive
controller is handful whenever a complex situation has to be
dealt with. Many techniques can be employed to build the
regulator that better fits the problem. Having designed and
parametrised that law, the “RT” part is obtained, while the
mentioned system partition directly reflects in the “S” and
“A” ones.

2.1 Interfacing with the computing system
In computing systems, actuators (in the control engineering
jargon, the entities that physically act on the object to be
controlled) are extremely heterogeneous and sometimes do
not even correspond to any well defined physical entity. An
actuator could be the memory allocated to a specific pro-
cess, the number of cores or the CPU time the process is
obtaining, the CPU frequency, the nice number that drive
the scheduling algorithm, and so forth. In some cases, oper-
ating an actuator directly means modifying some physically
meaningful quantity, but this is not always true. For ex-
ample, the nice number has an extremely indirect action
on the running processes, being in fact little more than an
abstraction. Also, the efficacy of actuators is extremely vari-
able, and virtually impossible to predict. If an application
switches from a CPU-bound to a memory-bound behaviour,
the efficacy of the “number of cores” actuator will drop. The
variability of actuators’ efficacy occurs at a time scale dic-
tated by the application code, and sometimes the processed
data, in such a way that only the application itself could
possibly notify the control system of which actuator is effec-
tive and which is not. Envisaging such an application role
is however quite unrealistic. It is necessary to design con-
trollers in the absence of any information on a very uncertain
actuator efficacy.

A second peculiarity refers to sensors. Contrary to most
other control domains, measurements are practically error-
free, but their relationship with the used performance met-
rics is sometimes quite indirect. As a result, the way the sys-
tem is “instrumented” is crucial. Suppose, for example, that
the performance metric is the amount of CPU time allotted



to an application. By introducing suitable timestamping
operations, one can measure the time elapsed between two
chosen events with virtually no error. However, there is no
certainty that all the measured time was really allotted to
the application, unless it was in a critical section, as inter-
rupts might have intervened. To eliminate such problems,
one must introduce“sensors”at all the involved levels, i.e., in
the example, both at the system and the application levels.
Moreover, and again concerning sensing, in classical control
problems, once a control-relevant quantity is identified, set-
ting up the sensing mechanism for it is mostly a matter of
technology. Static and dynamic errors may have to be dealt
with, but in no sense the nature of the measured quantity
is questioned. For example, if a temperature is to be con-
trolled, no doubt (unless in an irrelevant minority of cases) it
is among the quantities to measure. Depending on the par-
ticular problem, a thermocouple or a resistive or an infrared
sensor could be convenient, and there may be precision and
response speed issues, but the role and the meaning of that
temperature in the control problem is totally unambiguous.

In computing system problems, and particularly in the case
of resource allocation, things are far more blurred. The con-
trol problem may not naturally lead to identify the quan-
tities to be measured, and their dependence on the quan-
tities to be controlled may not be unambiguous. Suppose
for example to employ a cache miss sensor that provides the
amount of misses an application is experiencing. Obviously
enough, the measurement provided by that sensor is related
to the application speed but it is definitely not a direct mea-
sure of it.

2.2 A multi-level physics
Elaborating on the ideas above, a third peculiarity emerges.
In computing systems, at least two time scales are evidenced.
A “micro” scale is at the instruction level, where most of
the unpredictability resides. The other is at the control
level, where what is measured is typically the averaged result
of the micro-scale behaviour over conveniently defined time
spans (for example, the throughput of a server in the last sec-
ond). Most reasonably, one should model the system at this
second time scale, but this has to be done in the absence of
any intermediate layer between this and the micro-scale one.
Accepting a suggestive parallel, in temperature control the
micro scale would be that of molecular motion, the macro
scale that of a suitable control-to-output relationship, but
there is an intermediate modelling level in the form of en-
ergy balance equations, that encapsulate the micro level in a
way suitable for the macro one. In other words, in classical
domains, “macro-physics” helps modelling the system in a
control-keen manner. In computing systems, the equivalent
of macro-physics simply needs inventing. If one accepts to
do that, this in general leads to interpretable models, in the
sense that parameters have a well-defined counterpart in the
computing system. A deeper discussion on the exquisitely
modelling side of the problem can be found in [8].
In classical problems, sensors are naturally related to the
intermediate macro physics level, the same where control-
oriented equations reside. In computing systems, the oppo-
site is true: the intuitively conceived sensors are at the low-
est or the highest level, both unfit to produce models suitable
for a simple control design. The proposed framework, in its
most conceptual nature, is an attempt to systematically fill

this gap.

2.3 Sensors and actuators design
In the following s shall denote a set of Ns sensor measure-
ments si in a set Si; formally

s = {si ∈ Si|Si ⊆ R, i = 1, . . . , Ns} (1)

and S shall be a map that provides a suitable performance
metric (vector) y from the sensors data

y = S(s). (2)

In one word, in computing systems, the sensing problem is
“how to have sensor measurements at the right level”. As for
actuating, the problem is in somehow dual with respect to
sensing. In the former context, more “sensors” than perfor-
mance metrics are typically present. In the latter, one has
to map some synthetic control actions on a tendentiously
larger number of “physical” actuators. In the following a
shall denote a set of Na actuators signals ai in a set Ai;
formally

a = {ai ∈ Ai|Ai ⊆ R, i = 1, . . . , Na} (3)

and A−1 shall be a map between the control signal to the
manipulated variables a

a = A−1(u). (4)

To allow a straightforward use of simple control techniques,
it is additionally required that as many synthetic control
actions as performance metrics be present.

2.4 Modelling and controlling
The considerations made so far naturally lead us, for the
modelling phase, to describe the controlled system with the
block diagram of Figure 2. Suppose for simplicity that we

SP y

s1

s2

...

sNs

u

a1

a2

...

aNa

ũA−1

ϑ̂
Aϑ

M1 M2

Figure 2: The process is neatly isolated from the
other components of the system. M1 and M2 de-
pict two partitions of the system where identifica-
tion techniques could be applied.

are dealing with a scalar performance metric, termed y.
Block S represents the way y is obtained from the low-level
sensors si. Block P represents the core phenomenon to be
controlled. The key point here is that P is supposed to have
a single input ũ, that can be interpreted as the superposition
of all the actuators’ effects, combined together by block A.
The assumption that any combination of actuator values ai

can be described by a single value of ũ is definitely strong,
but can in principle be accepted if A is assumed to depend
on a time-varying parameter vector ϑ, whence the subscript
in Aϑ. If ϑ is estimated reliably enough, the scheme can
be complemented with a block A−1

ϑ̂
capable of selecting, for

a given desired u, one of the combination of values ai that
produces ũ by means of Aϑ. It is then possible to reason



on the problem like if the input to the controlled system
was u. Three different approaches could be envisioned when
reasoning about the problem. First, it is possible to treat
the series of Aϑ, P and S as a Multiple Input Single Out-
put (MISO) System. The model of this system, denoted
with M2 in Figure 2, can be identified with a black box
strategy. This solution often leads to very complex models,
such as the one learned with an Artificial Neural Network
in [1]. As discussed before, the efficacy of a single actuator
is mainly time-varying and off-line identification techniques
are not able to provide reliable results. A second possibility
is to choose A−1 according to an heuristic and keep it fixed,
resorting to identification to build a model of the u 7→ y
relationship, denoted with M1 in Figure 2. When dealing
with the specific problem, this approach will be explored
but it will be shown that in general, too complex models are
obtained. From these complex models, building a control so-
lution is difficult, and the generality of it is unquestionably
poor, since a very complex model captures the dynamics of
the instance used to get identification data more than a flex-
ible model. The third alternative, that in the presented case
study proved successful, is to consider the series of Aϑ, P
and S as a MISO system, but identifying such a system with
a grey box approach. In so doing, Aϑ is assumed static and P
dynamic and linear time invariant, based on the introduced
(control) time scale considerations. When a model is suc-
cessfully identified with this approach, usually resulting in a
low order P, it is possible to use the identified Aϑ to design
A−1

ϑ̂
. This makes the u 7→ y relationship still time-varying,

but simplifies the use of adaptive control techniques.
From the so obtained model, the control has to be designed.
Having isolated the process core phenomenon from the other
parts of the system, the design phase is simpler than it would
be without such a partition. In relevant cases, even sim-
ple control strategies (e.g., PID-based) could be beneficial.
However, in the most general case, time-varying behaviours
may occur and alter the controlled system dynamics. To
cope with this situation, a “tuning” or adaptation block is to
be considered. This block adapts the regulator parameters
according to the actual behaviour of the process. Hence, in
such a case, a control policy suitable for adaptive control is
necessary, e.g., Model Predictive Control (MPC) ones. The
resulting control scheme is shown in Figure 3, where R is
the regulator and T the tuning block.

u y

a1

a2

...

aNa

Ry◦ ũA−1

ϑ̂
M S

s1

s2

...

sNs

Aϑ

θ T

Figure 3: The SMART control scheme.

3. CONCLUSION AND FUTURE WORK
A framework to design computing system components as
feedback controllers was presented, named SMART as it di-
vides the design flow into Sensing, Modelling, Actuating,
Regulating, and Tuning. The strength of SMART is twofold.
First, the control law is not directly coded as an algorithm,
rather is obtained as the unambiguous implementation of a

dynamic model. Second, the identification of what is the
core phenomenon to be controlled leads to inherently simple
modelling and control techniques, thus to an easier design
and assessment. Those two aspects are distinctive with re-
spect to classical approaches, and the obtained results show
their effectiveness [9]. One of the main advantages of the
framework is that the generality of the resulting control
system is greater than any specific solution that could be
envisioned, this means that introducing actuators and dif-
ferent sensors would not require to change the structure of
the control problem. SMART was developed within a long-
term research, aimed at a deeper use of control-theoretical
methods in the realisation of computing systems’ compo-
nents. From a practical standpoint, SMART formalises the
mentioned idea of not only “closing loops around systems as
they were originally built”, but of intervening in the design
itself of said systems.

4. REFERENCES
[1] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated

management of multiple interacting resources in chip
multiprocessors: A machine learning approach. In
Proc. of the 41st MICRO, pages 318–329, 2008.

[2] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and
E. Brewer. Failure diagnosis using decision trees. In
Proc. of the Int. Conf. on Autonomic Computing,
pages 36–43, 2004.

[3] P. Geurts, I. El Khayat, and G. Leduc. A machine
learning approach to improve congestion control over
wireless computer networks. In Proc. of the 4th IEEE
Int. Conf. on Data Mining, pages 383–386, 2004.

[4] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M.
Tilbury. Feedback Control of Computing Systems.
2004.

[5] C. Karamanolis, M. Karlsson, and X. Zhu. Designing
controllable computer systems. In Proc. of the 10th
conference on Hot Topics in Operating Systems, pages
9–15, 2005.

[6] C. Lu, J. A. Stankovic, and S. H. Son. Feedback
control real-time scheduling: Framework, modeling
and algorithms. Journal of Real-Time Systems, Special
Issue on Control-Theoretical Approaches to Real-Time
Computing, 23:85–126, 2002.

[7] M. Maggio, F. Terraneo, and A. Leva. Task
scheduling: a control-theoretical viewpoint for a
general and flexible solution. ACM Transactions on
Embedded Computing Systems, May 2012.

[8] A. V. Papadopoulos, M. Maggio, and A. Leva. Control
and design of computing systems: what to model and
how. In Proc. of the 7th Int. Conf. of Mathematical
Modelling, MATHMOD’12, 2012. (to appear).

[9] A. V. Papadopoulos, M. Maggio, S. Negro, and
A. Leva. General control-theoretical framework for
online resource allocation in computing systems. IET
Control Theory & Applications, (accepted for
publication) 2012.

[10] R. Zhang, C. Lu, T. F. Abdelzaher, and J. A.
Stankovic. Controlware: A middleware architecture for
feedback control of software performance. In Proc. of
the 22 nd Int. Conf. on Distributed Computing
Systems (ICDCS’02), pages 301–306, 2002.


