
General control-theoretical framework for online

resource allocation in computing systems

Alessandro Vittorio Papadopoulosa, Martina Maggiob,

Sara Negroa and Alberto Levaa,∗

aDipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

bDepartment of Automatic Control, Lund University, Sweden

∗ Corresponding author, leva@elet.polimi.it

Abstract

System-theoretical methods are already used for the control of com-

puting systems, but much more can be done exploiting said methods

for their design. This requires to express in control-theoretical terms

desires and specifications that originate in the computer science do-

main, which may not be immediate. It also requires to accept that

part of the addressed system be modified, which may pose some ac-

ceptance problems. However, if those issues are handled correctly, the

payback is often very relevant. This paper demonstrates the above

ideas in the context of resource allocation.

Keywords: Computing Systems Design; Feedback Control.

1 Introduction

In recent years, a significant convergence is observed between the need

for “self adaptation”, evidenced in the computer science community, and

1

the possible responses coming from methodologies developed in the con-

trol one [14]. Examples are found in various areas, from security [11, 12]

to Quality of Service [1, 32, 34, 35], and more. Both communities agree on

the potential of that convergence [14], which seems very natural, as some

important computing system components – think for example of a scheduler

– are controllers in nature [26].

Curiously enough, however, virtually all the available literature on feed-

back control of computing systems only addresses the particular problem of

starting from a fully functional system and adding some external loops to

adapt its parameters, think for example about the queue length of a web

server [13]. Doing so means closing a loop around a system that already con-

tains some control. This control, generally designed directly as algorithms

and not by means of dynamic systems, can be shown to be basically a use-

less complication when designing the outer loop. In this work we propose

to shift the perspective from the control of a fully functional system to the

design of part of that system as a controller.

This perspective shift involves isolating some “core physical phenomenon”,

removing parts of the system that attempt to control it in a non system-

theoretical (i.e., essentially heuristic and hard to model) manner, and replace

them with properly designed controllers. As the examples later on will clar-

ify, doing so often allows simple paradigms to describe the control problem

in its entirety.

This paper proposes a general methodology to introduce computing sys-

tems self-adaptation in resource allocation problems by direct application of

simple feedback control techniques. As will emerge in the following, quite a

numerous variety of problems appear to be addressable with the proposed

ideas, but of course there are some applicability limits. For example, some

2

computing systems-related problems cannot be handled without the intro-

duction of event-based models, and if this is the case, the proposed approach

is not fit to the problem. However, to stick to the same example, in more

than one case the event-based paradigm is brought in without a real necessity

for it. If this is conversely the case, the proposed approach is advantageous.

The methodology was implemented in the Linux operating system, and

experimental results are presented. The methodology is named SMART –

which stands for Sensing, Modelling, Actuating, Regulating and Tuning.

2 Related work

This work deals with a feedback control based resource allocation mecha-

nism. The allocator resides completely at the software level, differentiating

the contribution from hardware ones like [2, 6, 10]. Control techniques have

been used also at the software level to provide performance [3,21,30,31,36]

and reliability [8] in web servers. Real-time schedulers have been comple-

mented with adaptation ability [7, 13, 22] and operating systems were also

the target for self-aware implementations [9, 18, 19, 29]. The difference be-

tween these work and our proposal lies in generality, since we are not solving

a specific problem as usually done, e.g., web server control. However, we

recognise that generality could come at the cost of a smaller improvement

in application that could be better controlled with a specific control policy.

At the same time, system level resources were the target of many opti-

misations. For example, machine learning was used for managing a memory

controller [17] and a neural network is implemented as a dedicated hardware

to manage resource allocation in multicore chips [6]. While these approaches

allow system level adaptation to be performed without input from the ap-

plication programmer, application performance must be inferred from either

3

low-level metrics like performance counters [2] or high-level metrics like total

system throughput [6] and there is no way for the system to understand if

a specific application is meeting its goal.

3 A preliminary example

To help perceive the rationale of SMART, a brief example based on [25,27]

is reported. Consider a multitasking system with fixed-priority preemptive

scheduling. The scheduler selects the ready task with the highest priority pi,

assigns the CPU to it for a fixed quantum q, then preempts it, and selects

the next task to run. Priorities pi can be changed by suitable system calls,

and measurements of the CPU time consumed by each task are available.

Suppose that the goal is that each task receives a given CPU time per-

centage. One can leave the existing scheduler in place, and design a feedback

controller acting on the priorities, based on the measured CPU use. In this

case the loop comprises not only the tasks’ behaviour in response to the CPU

allocation, but also the operation of the system calls, the queue management

logic, and so forth.

This is an evident and useless complications. Control desires are in fact

posed on the “core phenomenon” consisting of the tasks’ behaviour, which

is much simpler than what is enclosed in the loop if the system is taken as

is. A task receives a certain allotted amount bi of CPU time or “burst”, and

returns the CPU after a time that can differ from bi, typically because the

CPU was yielded in advance, or a critical section delayed the preemption.

Denoting by τi(k) the CPU time accumulated by the i-th task at the

k-th scheduler intervention, the core phenomenon to control is simply ruled

by

τi(k) = τi(k − 1) + bi(k − 1) + δ(k − 1) (1)

4

where the disturbance δ accounts for the mentioned discrepancies.

Notice also that the way the original scheduler is designed is a further

source of complication. In fact, the influence of “who can interrupt who”

– i.e., the priorities – on the CPU distribution is not easy to describe and

control. If one instead acts on the bi directly, any goal expressed as a desired

behaviour of tasks’ CPU use over time, can be achieved in a methodologically

grounded manner, and formally assessed. For example, [20] proposes a PI-

based mutivariable control scheme, of which [28] describes a microcontroller

kernel implementation.

If the proposed perspective shift is not accepted, the authors believe

that complexity may become a real issue. Consider for example the Linux

scheduler. In Kernel 2.4.37.10, released in September 2010, its code was

contained in one file 1397 lines long. In Kernel 2.6.39.4, released in August

2011, the scheduler is spread among 13 files totalling 17598 lines. The

scheduler of [28] fits in about 500 lines, only a fraction of which devoted to

the control algorithm.

One may object that the Linux scheduler provides features not addressed

in by these 500 lines. However, most of the Linux scheduler is devoted to re-

alise alternative policies, that can all be proven to be special cases of a single

dynamic system [25], and could be reconciled as different parametrisation

of a single controller, or the generation of different set point signals. Also,

much of the observed Linux code increase is due to the inclusion of multi-

core CPUs, which in fact just proves that controllers conceived directly as

algorithms do not scale up as naturally as controllers conceived as dynamic

systems: the model in [25], incidentally, already considers multiple cores.

In any case, whenever the code of a core functionality (as the scheduler

is, in an operating system) explodes by a factor of ten in one year after

5

twenty of lifetime, it may be a good idea to reconsider the design approach—

for example, in a more system-theoretical way than before. The proposal

of SMART comes from noticing that the simplifications just shown in the

scheduling case carry over to many other computing system problems, thus

suggesting a general design methodology.

4 The SMART Design Framework

The example of Section 3 should evidence the usefulness of structuring com-

puting systems adaptation problems as a control one right from the begin-

ning: if this calls for modifying part of the system, most likely – and a

bit crudely – one is just removing “unduly introduced physics”. As will be

shown, this is in general a benefit.

SMART can be seen as a sequence of design steps. That sequence most

likely appears to a control scientist as plain trivial, but nonetheless has at

least two merits. First, in the computing system domain, such a design

structuring is novel indeed. Second, and most relevant here, SMART shows

that some problems for which complex control techniques were (successfully)

applied, can be tackled with simpler ones as well if conveniently structured.

Since in computers “one creates physics”, their management is an impres-

sively suited domain for process/control co-design. In the opinion of the

authors, SMART provides a nice contribution in that direction.

Apparently, an accurate analysis on the (expected) impact of the ap-

proach on the addressed system must be performed, as in fact the pro-

posed methodology lies and operates in an abstract level. In principle, thus,

there some problems may emerge so that a solution can be found at the

abstract level, but its implementation is not possible or inconvenient ow-

ing to application-specific limitations. Since this work does not just present

6

the abstract level but also an implementation of it, the mentioned analysis

allows to better evidence the effectiveness of such an approach.

For the sake of clarity we will go through the procedure twice. Here, we

present the main steps of SMART at a glance, to provide the reader with

an overview of the approach. Then, we apply SMART to a representative

example (a resource allocation problem), to evidence its advantages, and

delve into further considerations that would not be so clear if presented

totally in abstracto.

The first step of SMART is to formulate the problem as a set point

tracking one, a functional minimisation one, or any combination thereof.

This indicates the measurements to be acquired from the system to qualify

its behaviour (i.e., the Sensing part). Also, this dictates which sensors need

introducing – if not already present – and where. In fact, SMART is not

applicable only if this step cannot be carried out, but no such case has

emerged yet. On the other hand, as the example will show, this is the point

where some system redesign is most frequently required.

Having defined sensors, one must see if the system allows for some action

to influence the chosen measurements of its behaviour. Generally the answer

is affirmative, although here too some additions could be suggested. The

mentioned actions provide the Actuation part.

Then, a (generally dynamic) Model needs writing to relate A to S. Un-

fortunately, and contrary to other control domains, said model cannot be

grounded on any set of physical principles. However, thanks to the vicinity

of A and S to the anticipated “core phenomenon”, in many cases of interest

simple and synthetic considerations allow to write the required model with

some convenient grey box approach. Also, the same vicinity above normally

allows for quite simple models—this too is exemplified in the following.

7

The Regulator structure, quite intuitively, can now emerge from that

of the model, and thanks to the elimination of undue physics pursued so

far, is tendentiously simple, which eases – and sometimes de facto enables –

the use of powerful control techniques. As a result, the subsequent Tuning

phase quite often leads to computationally light solutions.

The applicability limits of SMART are dictated by the feasibility of the

steps above. Fortunately, in many cases the analyst can figure out whether

SMART is applicable or not based on a quite preliminary analysis.

5 Resource allocation via SMART

The problem addressed is to complement a multitasking operating system

with an application-aware resource allocator, with the purpose of making

an application reach its goal not only within a certain time, but also with

a prescribed progress rate. The problem is quite general, as it emerges

whenever the rate of processed data delivery is of concern. A notable case,

for example, is the encoding of video streams.

5.1 Sensing

The system behaviour is quantitatively indicated by the application “progress

rate”, which however is not currently measured by the operating system as is

directly. Operating systems typically provide information on what resources

an application is engaging, by measuring the used CPU time, the number of

assembler instructions executed per second, the cache miss or memory page

fault rates, and so forth. This however does not tell whether the applica-

tion is using resources to do useful work, or for example just spinning on a

lock. Many workarounds were attempted to infer the application progress

from the taken resources but these are invariantly architecture-specific to

8

the detriment of portability, and above all miss the core issue: the use of

resources ultimately depends on the application, hence that is where sensing

must be located.

For sensing, here the recently proposed Application Heartbeats (HB)

framework [15] is used. In HB, applications are instrumented to emit a

“heartbeat” when something relevant to appreciate their progress is accom-

plished (for example, a video encoder could signal each frame completion).

Using HB is quite simple for the application programmer, who knows what

the application is meant for. Also, and most important, doing so naturally

locates sensing at the correct level—a small modification for a system, a

significant simplification for its control.

5.2 Actuation

The allocator can exert control actions by allotting an application more or

less resources. Here too, SMART first requires to observe what the system

as is provides as possible actuators, limiting however the choice to what acts

on the desired behaviour directly. For example, the number of CPU cores

and their clock frequencies are suitable actuators, in that their effect mostly

(not to say only) depends only on what the application is doing. The CPU

time fraction is less suited, as the actual (not the desired) distribution of

the CPU also depends on the scheduler operation. Other quantities like the

nice number are finally totally inadequate, as their influence is even more

indirect than that of the desired CPU time fraction, and difficult to model.

In the case at hand, the number of cores and the frequency are adopted

as actuators. This is a reasonable choice as confirmed by the subsequent

modelling and control design phases. Hence, for actuating, no intervention

on the system is here introduced.

9

5.3 Modelling

It was stated that, if sensors and actuators are introduced at the right level,

i.e., as near as possible to the core phenomenon, the model required for

control synthesis “tends to be simple”. This is now demonstrated in the

addressed problem.

The required model is a MISO dynamic system, having as inputs the

actuators’ actions ai ∈ a, and as output the sensor output sj ∈ s. The main

problem is a variable and hard to predict actuator efficacy. For example, if

an application switches from a CPU-bound to a memory-bound behaviour,

the efficacy of a “number of cores” actuator will drop. Such variability

occurs at a time scale dictated by the application code, and sometimes the

processed data. Only the application itself could notify about actuators’

effectiveness, but from a technological viewpoint this is quite unrealistic.

However, in the example two time scales exist: one at the code level,

where most of the unpredictability resides, the other at the observed be-

haviour level, where sensors’ measurements in fact average code level facts

over convenient time spans (for example, the number of heartbeats in the

last second). The time scale of actuator actions is the code-level one, hence

at the observed behaviour level the effect of actuators can be safely regarded

as instantaneous, or ruled by very simple dynamics. It is thus reasonable to

assume for the model the form

s(k) = φ (s(k − 1), s(k − 2), . . . ;ψ) + γ (a(k − 1),a(k − 2), . . . ;ϑ) (2)

where the discrete time index k counts the measurement (and control) in-

stants, while ψ and ϑ are parameter vectors. A key point, further stem-

ming from the remark above, is that in many cases one can assume φ = 0

10

(thus no dynamics at the control time scale except for a delay) or at most

φ = p s(k − 1), i.e., a first-order dynamics. Moreover, ψ – or p in the

simplified case – are more connected to the time span over which sensors

measurements average the code-level behaviour than to that behaviour in

detail: as a result, p can generally be considered time invariant. Adopt-

ing from now on these simplifications, and specialising to the example, the

required model can be written as

hr(k) = (p)hr(k − 1) + (1− p)σ(k − 1), 0 ≤ p < 1 (3)

where hr is the application heart (beat) rate, and σ represents – in suggestive

terms – the “speedup” yielded collectively to the application by the resources

allotted through the actuators.

The problem is therefore confined to determining a suitable map {ai} 7→

σ, possibly time-varying due to the variability of ϑ. Here too, the prob-

lem characteristics help if instrumentation is carried out properly. In fact,

actuator efficacy variability is due mostly to the application, and gener-

ally undergoes modifications that may be abrupt and of remarkable entity,

but sporadic with respect to the control time scale. To explain, first think

again to a video encoder. During the management of each frame, it will

more or less traverse the same sequence of operations: first read data, being

thus bound essentially to some peripheral, then compute, which is basically

CPU-bound, and finally write, which is again peripheral-bound. If such an

application is instrumented by making it emit a heartbeat per frame, large

variability of a “number of cores” actuator efficacy are not to be expected.

Consider, conversely, an application that reads a lot of data, and then per-

forms some mathematically-intensive processing of them in a batch fashion.

11

If the code is written by exploiting an available parallel architecture, the

same actuator will be of hardly any efficacy in the read phase, but very

relevant in the processing one. If the control time scale is chosen properly,

there will be several control steps in both phases, and so a single abrupt

system variation will be observed. Clearly in both cases things could com-

plicate a lot if instrumentation is done differently, but this just testifies that

instrumenting an application requires knowledge of it.

For completeness, one could object that also external facts (e.g., an un-

available lock) could introduce variability. However, the only major differ-

ence with respect to the second example just given is that such facts cannot

be forecast even knowing about the application. In any case, with a prop-

erly chosen instrumentation and control time scale, the sporadic character

of variations still carries over—and anticipating a bit, standard adaptive

controllers can handle such situations successfully.

As for the {ai} 7→ σ (static) map, in most cases synthetic considerations

are sufficient to devise a structure for it, resorting then to grey box identifi-

cation for its parametrisation. A quite general form for that map, according

to experience, is

σ =

Na∏
i=1

(kia
αi
i + oi) (4)

where Na is the number of actuators, defining ϑ ∈ <3Na as

ϑ =

[
k1 α1 o1 k2 α2 . . . kNa αNa oNa

]′
(5)

Apparently, if the actuators are the number of cores c and the normalised

frequency f , (4) reduces to

σ = (kcc
αc + oc) (kff

αf + of) . (6)

12

R A−1 A M

T

σ◦ σa ss◦

Figure 1: The SMART control scheme.

5.4 Regulating and tuning

The SMART framework naturally leads to a control scheme like that of

Figure 1.

The modelling phase has shown that by conveniently instrumenting the

system, the problem can be addressed taking as “process” model a MISO

Hammerstein one (blocks A and M). There is a vast literature on such

models, but the situation (abrupt but sporadic variabilities of otherwise

smooth models with very simple dynamics) and the typical requirements of

computing systems control/design (high speed and computational lightness)

advise here too for a domain-specific approach. In other words, the choice is

made to reason for the control synthesis as if the manipulated variable was

a desired speedup σ◦, while at the same time taking profit of the degrees of

freedom introduced by the σ◦ 7→ {ai} (i.e., block A−1 in Figure 1) as part

of the system components’ design.

Quite intuitively, in fact, a given speedup value will not be yielded by a

single actuator combination. If that is the case, to select the combination

output by the σ◦ 7→ {ai} for a certain value of σ◦, one can bring in for

example considerations regarding the consumed power, the least use of some

or some other resources based on what are most “precious” for the system,

or technologically simpler to act upon, and so forth. Any such mechanism

13

will work under the assumption that σ◦ 7→ {ai} is either known or estimated

reliably enough, which means that the R phase works if the A one is carried

out properly.

Here too, the addressed example is useful to clarify. The number of

cores and the frequency are used as the actuators. The number of cores can

assume only integer values, but can be treated as real thanks to a Pulse

Width Modulation-like policy. For example, if 2.4 cores must be assigned to

an application, the actuation policy allots 3 cores for the 40% of the control

interval and 2 cores for the 60% of the control interval. The two actuators

however impact the system differently, since in general the frequency is the

same for all cores. Thus a frequency change is more invasive than a core

re-allocation, and based on that (design) consideration, the adopted solution

can be summarised as follows:

1. starting from the speedup σ◦ computed by the controller, c is com-

puted maintaining the clock frequency of the previous step,

2. if c is not within its saturation values, the frequency is increased or

decreased (accordingly to which saturation is violated) and step 1 is

repeated,

3. otherwise the computed number of cores and clock frequency are as-

signed to the application.

Given all the above, the chosen σ◦ 7→ {ai} map and the cascaded Ham-

merstein MISO model composed of (3) and (4), can be viewed as a time-

varying linear SISO model. The nominal σ◦ 7→ {ai} map above is physically

realised in the system as block A−1 in Figure 1 and the task of counteracting

variabilities is delegated to an adaptive controller designed in a linear con-

text. In so doing, the considered problem (like many others) can be cast in

14

the strong framework of linear adaptive Model Predictive Control (MPC), to

which it did not belong prior to its structuring along the SMART approach.

The presented resource allocation example can be treated with an adap-

tive model predictive controller, based on an ARX-type process model of

fixed structure, parametrised on line by recursive identification. The choice

of the ARX orders, the prediction horizon, and the two weights on the error

and the control energy, are the subject of the subsequent Tuning phase, that

thanks to the previous problem structuring, is completely standard.

6 Results

This section presents some results for the resource allocation case. Two

tests are reported, referring to two applications of the PARSEC benchmark

suite [5]. The first example shows that SMART leads to satisfactory results

with applications that are not easy to instrument. The second example

conversely refers to an easy to instrument application, which is controlled

with multiple actuators, and shows that also in this case adaptive controllers

designed with the SMART approach are simpler than in its absence. Sections

6.1 and 6.2 report simulation tests while experimental ones are presented in

Section 6.3.

6.1 Example 1 - vips

Vips is based on the VASARI Image Processing System and includes fun-

damental image operations such as affine transformation and convolution.

The vips processing pipeline has 18 different stages, making therefore the

program very parallel and hard to control. In the presented test, an image

of 18000× 18000 pixels is processed.

The grey box model (3) and (4), having as input only the number of

15

allotted cores, was identified offline with an LS-based technique on several

runs. The identified parameters are

ϑ̂vips =


kc

αc

oc

 =


258.75388

1.1930687

681.67218

 . (7)

An MPC controller was then designed based on an ARX(1, 1) (note the

orders) model identified on line via RLS. Figure 2 summarises the results.

Figure 2a shows that the model reasonably fits the data. The satisfactory

adaptive control behaviour in the face of the application behaviour varia-

tions, induced by the various phases of its algorithm, is shown in Figures 2b

and 2c, that respectively report the desired and actual heart rate, and the

control signals. To make the adaptive controller converge to a stable so-

lution, a PI controller – better described in [16] – is used to control the

application for the first 100 time units. Also, notice that the process time-

variance has been modelled as parameter uncertainty, which causes the peaks

in the plots.

6.1.1 Brief comparison with an alternative identification approach

As noticed, the employed adaptive controller uses a very simple model, sug-

gested by the structure of (3) and the concept of speedup induced by the

SMART problem structuring. This would not be the case if identification

was applied without said problem (and controller) structuring. To witness

that, Figure 3 shows how models with different complexity reproduce the

measured data without the SMART structuring, i.e., considering as input

the number of cores, and as output the heart rate.

As can be seen, complex models seem to be unconditionally preferable,

16

h
e
a
rt

 r
a
te

0

1000

2000

3000

4000

beats (time)

0 5 10 15 20 25 30 35

measured heart rate

estimated heart rate

(a) Collected data from the system (blue) vs Model simulation (green).

h
e
a
rt

 r
a
te

0

2000

4000

6000

8000

10000

12000

beats (time)

0 100 200 300 400 500 600 700 800 900 1000

desired heart rate

heart rate

(b) Simulation results of the heart rate (black) set-point following (red).

#
c
o
re

s

1

2

3

4

5

6

7

8

beats (time)

0 100 200 300 400 500 600 700 800 900 1000

#cores

(c) Simulation results of the control signal (black), which in this case
corresponds to the number of cores.

Figure 2: Simulation results for vips control.

17

0

1000

2000

3000

4000

5000

time

0 5 10 15 20 25 30 35

progress rate

ARX(1,1)

ARX(10,10)

ARX(20,20)

ARX(30,30)

AMX(10,10,10)

Figure 3: Vips identification results with different model structures.

Table 1: Results obtained in the Matlab Identification Toolbox.

Model Delay Best Fits

ARMAX(10, 10, 10) 1 62.24
ARX(30, 30) 9 61.63
ARX(20, 20) 9 61.53
ARX(10, 10) 9 61.36
ARX(1, 1) 1 58.98

so that typical model order selection tools (the MATLAB ident toolbox was

used here) invariantly tend to select the maximum allowed model orders, see

Table 1, where the fit measure is set to

1−
‖Y − Ŷ ‖2
‖Y − Ȳ ‖2

 · 100 (8)

Such a situation can reasonably be blamed on the absence of the grey

box model structuring typical of SMART. In the case at hand, after ab-

stracting the synthetic “speedup” actuator instead of sticking to have as

inputs the physical one (number of cores), said approach leads to detect

a very small order dynamics cascaded to a substantially static nonlinear-

ity, that an adaptive mechanism based on a very simple ARX can handle

satisfactorily.

18

6.2 Example 2 - bodytrack

The bodytrack application tracks the 3D pose of a human body with multiple

cameras and no markers, employing an annealed particle filter. It has a

parallel thread pool, with three different kernels [4]. The presented tests use

4 cameras, 261 frames, 4000 particles, and 5 annealing layers.

In this case the grey box model 3 and 4, having as inputs the number of

allotted cores and the clock frequency, was identified offline as in Section 6.1.

The obtained parameters are

ϑ̂bodytrack =



kc

αc

oc

kf

αf

of


=



0.1931659

1.613834

3.5964752

2.3736936

0.1609101

−1.9965658


. (9)

Also in this case, an MPC controller was designed based on an ARX(1, 1)

(once more, note the orders) model identified on line via RLS. Figure 4,

organised in the same way as Figure 2, summarises the results. The satis-

factory adaptive control behaviour in the face of the application behaviour

variations, induced by the various phases of its algorithm, is shown in the

Figure 4b and 4c, that respectively report the desired and actual heart rate,

and the control signals. Notice that here too a very simple ARX model is

used.

19

h
e
a
rt

 r
a
te

1

2

3

4

5

6

7

beats (time)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

measured heart rate

estimated heart rate

(a) Collected data from the bodytrack software application (blue) and
simulation with the identified model (green).

h
e
a
rt

 r
a
te

0

1

2

3

4

5

beats (time)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

heart rate

desired heart rate

(b) Simulation results of the heart rate (black) set-point following (red).

s
p
e
e
d
u
p

0

2

4

6

8

10

12

beats (time)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

speedup

#cores

normalised frequency

(c) Simulation results of the control signal (green), number of cores
(black) and normalised clock frequency (violet).

Figure 4: Bodytrack identification and (simulated) control.

20

6.3 Experimental verification

In the tests of this section, the two applications are run on a real machine1

using the number of cores as the only available actuator.

h
e
a
rt

 r
a
te

0

500

1000

1500

2000

2500

3000

3500

4000

beats

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

heart rate

desired heart rate

(a) MPC Heart Rate
#
c
o
re
s

1

2

3

4

5

6

7

8

beats

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

#cores

(b) MPC Core Number

h
e
a
rt

 r
a
te

0

500

1000

1500

2000

2500

3000

3500

4000

beats

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

heart rate

desired heart rate

(c) PI Heart Rate

#
c
o
re
s

1

2

3

4

5

6

7

8

beats

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

#cores

(d) PI Core Number

h
e
a
rt

 r
a
te

0

500

1000

1500

2000

2500

3000

3500

4000

beats

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

heart rate

desired heart rate

(e) SARSA Heart Rate

#
c
o
re
s

1

2

3

4

5

6

7

8

beats

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

#cores

(f) SARSA Core Number

Figure 5: Vips Experimental Results

To compare the proposed solution with differently conceived alterna-

tives, a PI-based scheme was realised as proposed in [23], and a SARSA

reinforcement learning [33] was implemented—details can be found in [24].

As a first example, vips is controlled with an MPC developed within the

SMART framework, which produces the results of Figures 5a and 5b. In

1All experiments are run on a Dell PowerEdge R410 server with two quad-core Intel
Xeon E5530 processors running Linux 2.6.26. The processors support seven power states
with clock frequencies from 2.4 GHz to 1.6 GHz.

21

h
e
a
rt

 r
a
te

0

1

2

3

4

5

6

beats

0 20 40 60 80 100 120 140 160 180 200 220 240

heart rate

desired heart rate

(a) MPC Heart Rate

#
c
o
re
s

1

2

3

4

5

6

7

8

beats

0 20 40 60 80 100 120 140 160 180 200 220 240

#cores

(b) MPC Core Number

h
e
a
rt

 r
a
te

0

1

2

3

4

5

6

beats

0 20 40 60 80 100 120 140 160 180 200 220 240 260

heart rate

desired heart rate

(c) PI Heart Rate

#
c
o
re
s

1

2

3

4

5

6

7

8

beats

0 20 40 60 80 100 120 140 160 180 200 220 240 260

#cores

(d) PI Core Number

h
e
a
rt

 r
a
te

0

1

2

3

4

5

6

beats

0 20 40 60 80 100 120 140 160 180 200 220 240

heart rate

desired heart rate

(e) SARSA Heart Rate

#
c
o
re
s

1

2

3

4

5

6

7

8

beats

0 20 40 60 80 100 120 140 160 180 200 220 240

#cores

(f) SARSA Core Number

Figure 6: Bodytrack Experimental Results

the same situation the PI controller behaves as shown in Figures 5c and 5d,

and the reinforcement learning algorithm execution is depicted in Figures 5e

and 5f.

A second example refers to bodytrack. The SMART MPC controller,

developed considering the number of cores as the only available actuator,

yields the results of Figures 6a (heart rate) and 6b (number of cores allotted

to the application), while the PI controller behaves as shown in Figures 6c

and 6d, and the SARSA one as in Figures 6e and 6f.

As can be noticed, some applications are simple to instrument (e.g.,

bodytrack) and can be managed by more or less any solution with compara-

ble results. In such cases, SMART tends to reduce the controller complexity.

22

On the other hand, other applications (e.g., vips) are far more complex to

instrument reliably, and in such cases only adaptive controllers can achieve

good results. In this latter situation, the control synthesis ease provided by

the SMART structuring is even stronger a benefit.

7 Conclusion and future work

This manuscript suggests that the benefits of control-theoretical methods in

the field of computing systems are dramatically enhanced if the perspective

is shifted from controlling already functional systems to designing parts of

them as controllers. Such a re-design attitude was shown to provide simpler

solutions with respect to classical ones, covering a wider spectrum of cases

and allowing for better interpretability and formal assessment.

The presented ideas do not of course apply to any computing system

control problem, and their applicability limits were synthetically evidenced.

Nonetheless, the variety of the addressable problem makes the proposal in-

teresting, at least in the opinion of the authors.

Moreover, heuristics is confined into a single step of the design procedure

and may possible be removed in the future if some suitable set of principles is

devised. The quest for such principles will be the subject of future research,

the ultimate goal being the realisation of objects such as a totally control-

based operating system.

References

[1] T. F. Abdelzaher, Y. Lu, R. Zhang, and D. Henriksson. Practical

application of control theory to web services. In Proceedings of the

23

2004 American Control Conference, volume 3, pages 1992–1997, July

2004.

[2] D. H. Albonesi, R. Balasubramonian, S. G. Dropsho, S. Dwarkadas,

E. G. Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott,

G. Semeraro, P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E. Schus-

ter. Dynamically tuning processor resources with adaptive processing.

Computer, 36:49–58, December 2003.

[3] M. Ben-Yehuda, D. Breitgand, M. Factor, H. Kolodner, V. Kravtsov,

and D. Pelleg. Nap: a building block for remediating performance bot-

tlenecks via black box network analysis. In Proceedings of the 6th in-

ternational conference on Autonomic computing, ICAC ’09, pages 179–

188, New York, NY, USA, 2009. ACM.

[4] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Prince-

ton University, January 2011.

[5] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC benchmark

suite: Characterization and architectural implications. In Proceed-

ings of the 17th International Conference on Parallel Architectures and

Compilation Techniques, October 2008.

[6] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated management

of multiple interacting resources in chip multiprocessors: A machine

learning approach. In Proceedings of the 41st annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO 41, pages 318–329,

Washington, DC, USA, 2008. IEEE Computer Society.

[7] A. Block, B. Brandenburg, J. H. Anderson, and S. Quint. An adaptive

framework for multiprocessor real-time system. In Proceedings of the

24

2008 Euromicro Conference on Real-Time Systems, ECRTS ’08, pages

23–33, Washington, DC, USA, 2008. IEEE Computer Society.

[8] G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Fox. JAGR: an au-

tonomous self-recovering application server. In Autonomic Computing

Workshop, pages 168–177, June 2003.

[9] C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W. Wisniewski.

Performance and environment monitoring for continuous program opti-

mization. IBM Journal Research Development, 50(2/3):239–248, 2006.

[10] S. Choi and D. Yeung. Learning-based SMT processor resource distri-

bution via hill-climbing. In Proceedings of the 33rd annual international

symposium on Computer Architecture, ISCA ’06, pages 239–251, Wash-

ington, DC, USA, 2006. IEEE Computer Society.

[11] R. Dantu and J. W. Cangussu. An architecture for network security

using feedback control. In ISI, pages 636–637, 2005.

[12] R. Dantu, J. W. Cangussu, and S. Patwardhan. Fast worm contain-

ment using feedback control. IEEE Trans. Dependable Secur. Comput.,

4:119–136, April 2007.

[13] C.-J. Hamann, M. Roitzsch, L. Reuther, J. Wolter, and H. Hartig.

Probabilistic admission control to govern real-time systems under over-

load. In Proceedings of the 19th Euromicro Conference on Real-Time

Systems, pages 211–222, Washington, DC, USA, 2007. IEEE Computer

Society.

[14] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback

Control of Computing Systems. Wiley, 2004.

25

[15] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. Miller, and A. Agar-

wal. Application heartbeats: a generic interface for specifying program

performance and goals in autonomous computing environments. In

ICAC ’10: Proceeding of the 7th international conference on Autonomic

computing, pages 79–88, New York, NY, USA, 2010. ACM.

[16] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Agarwal, and

A. Leva. SEEC: a framework for self-aware computing. Technical Re-

port MIT-CSAIL-TR-2010-049, Massachusetts Institute of Technology,

Computer Science and Artificial Intelligence Laboratory, Cambridge,

October 2010.

[17] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana. Self-optimizing

memory controllers: A reinforcement learning approach. In Proceedings

of the 35th Annual International Symposium on Computer Architecture,

ISCA ’08, pages 39–50, Washington, DC, USA, 2008. IEEE Computer

Society.

[18] C. Karamanolis, M. Karlsson, and X. Zhu. Designing controllable com-

puter systems. In Proceedings of the 10th conference on Hot Topics in

Operating Systems - Volume 10, pages 9–9, Berkeley, CA, USA, 2005.

USENIX Association.

[19] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski, J. Xeni-

dis, D. Da Silva, M. Ostrowski, J. Appavoo, M. Butrico, M. Mergen,

A. Waterland, and V. Uhlig. K42: building a complete operating sys-

tem. SIGOPS Oper. Syst. Rev., 40:133–145, April 2006.

[20] A. Leva and M. Maggio. Feedback process scheduling with simple

discrete-time control structures. IET Control theory and applications,

26

4(11):2331–2342, November 2010.

[21] B. Li and K. Nahrstedt. A control-based middleware framework for

quality-of-service adaptations. IEEE Journal on Selected Areas in Com-

munications, 17(9):1632 –1650, Sept. 1999.

[22] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feedback control real-

time scheduling: Framework, modeling, and algorithms. Real-Time

Systems, 23:85–126, July 2002.

[23] M. Maggio, H. Hoffmann, M. Santambrogio, A. Agarwal, and A. Leva.

Controlling software applications within the heartbeats framework. In

49th IEEE Conference on Decision and Control, December 2010.

[24] M. Maggio, H. Hoffmann, M. Santambrogio, A. Agarwal, and A. Leva.

Decision making in autonomic computing systems: Comparison of dif-

ferent approaches and techniques. In ICAC ’11: Proceeding of the

7th international conference on Autonomic computing, Karlsrhue, Ger-

many, 2011. ACM.

[25] M. Maggio and A. Leva. A new perspective proposal for preemptive

feedback scheduling. International Journal of Innovative Computing,

Information and Control, 6(6), October 2010.

[26] M. Maggio and A. Leva. Toward a deeper use of feedback control in

the design of critical computing system components. In 49th IEEE

Conference on Decision and Control, pages 5985–5990, 2010.

[27] M. Maggio, A. Papadopoulos, and A. Leva. On the use of feedback

control in the design of computing system components. Asian Journal

of Control. (in press).

27

[28] M. Maggio, F. Terraneo, and A. Leva. Implementation and evaluation

of a control-theoretical scheduler. ICIC Express Letters, 4(6b):2343–

2347, December 2010.

[29] S. Oberthür, C. Böke, and B. Griese. Dynamic online reconfiguration

for customizable and self-optimizing operating systems. In Proceedings

of the 5th ACM international conference on Embedded software, EM-

SOFT ’05, pages 335–338, New York, NY, USA, 2005. ACM.

[30] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,

A. Merchant, and K. Salem. Adaptive control of virtualized resources

in utility computing environments. In Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007,

EuroSys ’07, pages 289–302, New York, NY, USA, 2007. ACM.

[31] L. Sha, X. Liu, Y. Lu, and T. Abdelzaher. Queueing model based

network server performance control. In Proceedings of the 23rd IEEE

Real-Time Systems Symposium, RTSS ’02, pages 81–, Washington, DC,

USA, 2002. IEEE Computer Society.

[32] Q. Sun, G. Dai, and W. Pan. LPV model and its application in web

server performance control. In Proceedings of the 2008 International

Conference on Computer Science and Software Engineering - Volume

03, CSSE ’08, pages 486–489, Washington, DC, USA, 2008. IEEE Com-

puter Society.

[33] R. S. Sutton and A. G. Barto. Reinforcement Learning: an introduc-

tion. Adaptive Computation and Machine Learning series. MIT Press

(Bradford Book), Cambridge, MA, USA, 1998.

28

[34] M. Tanelli, D. Ardagna, and M. Lovera. LPV model identification for

power management of web service systems. In Control Applications,

2008. CCA 2008. IEEE International Conference on, pages 1171 –1176,

September 2008.

[35] T. Voigt and P. Gunningberg. Adaptive resource-based web server

admission control. In Proceedings of the 7th International Symposium

on Computers and Communications, pages 219–224, 2002.

[36] R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic. Controlware:

A middleware architecture for feedback control of software performance.

In Proceedings of the 22 nd International Conference on Distributed

Computing Systems (ICDCS’02), ICDCS ’02, pages 301–306, Washing-

ton, DC, USA, 2002. IEEE Computer Society.

29

