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Outline

Thursday lecture

» Course introduction
» Models from physics (white boxes)

Friday lecture

» Models from data (black boxes)
» Singular Value Decomposition (SVD)
» Machine Learning
» System Identification / Time Series Analysis

» Mixed models (grey boxes)

Modelling in three phases:

1. Problem structure
» Formulate purpose, requirements for accuracy
» Break up into subsystems — What is important?

2. Basic equations
» Write down the relevant physical laws
» Collect experimental data
» Test hypotheses
» Validate the model against fresh data

3. Model with desired features is formed

» Put the model on suitable form.

(Computer simulation or pedagogical insight? )
» Document and illustrate the model
» Evaluate the model: Does it meet its purpose?

Matematical model
and requirement
specification

Lecture 2

» Statistical modeling from data (statistical black boxes)

» Singular Value Decomposition (SVD)
» Principal Component Analysis (Factor Analysis)

» Dynamic experiments (dynamik black boxes)
» Step response
» Frequency response
» Correlation analysis
» Gray boxes
» Prediction error methods
» Differential-Algebraic Equations revisited

Singular Value Decomposition (SVD)

A matrix M can always be factorized

0] (4
M-U{0 O}V

with ¥ diagonal and invertible and U, V unitary:

o1
Y= U*U=1 Vv =I
On

Diagonal elements of £ are called singular values of M and
correspond to the square roots of the eigenvalues of M*M.

Computation of SVD is very numerically stable.

Example of SVD
M = U B g] v*
=gk R T
— —

What does it mean if a singular value is zero?

What does it mean if it is near zero?

Good children can have many names

Collect all the data into a large matrix. Then compute the SVD:
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Singular values o; in decreasing order on the diagonal of X.
The first columns of U give the direction of the main data area.

Principal Component Analysis: By replacing the small
singular values o; with zeros focuses on the essential.

The name ‘factor analysis’ is sometimes used as a
synonymous, since large singular values o; highlight important
factors.




Principal Component Analysis (PCA)

Data from a bi-dimensional Gaussian distribution centered in
(1,3):

Example: Image processing

What does this picture represent?

M=
1 0 0 1 1 1 0 1 0 1
1 0 o 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 1 1
1 0 0 0 1 0 0 1 0 1
1 1 0 0 1 0 0 1 0 1
Principal component (0.878,0.478) has standard deviation 3.
Next component has standard deviation 1.
[Kalla: Wikipedia]
Example: Image processing with SVD Example: Image processing with SVD
>> [U,S,V]=svd(M)
round (UxS1*V’) =
U=
1 0 0 0 1 0 0 1 0 1
-0.4747  0.8662  0.0000 -0.15659  0.0000 1 0 0 0 1 0 0 1 0 1
-0.4291 -0.1371 -0.0000  0.5450 -0.7071 1 0 0 0 1 0 0 1 0 1
-0.4508 -0.3256 -0.7071 -0.4368 -0.0000 1 0 0 0 1 0 0 1 0 1
-0.4291 -0.1371 -0.0000 0.5450 0.7071 1 0 0 0 1 0 0 1 0 1
-0.4508 -0.3256  0.7071 -0.4368  0.0000
S - round (UxS2*V’) =
4.5638 0 0 0 0 0 0 0 0 0 L 0 0 1 L 1 0 1 0 L
0 1.3141 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1
0 0 1.0000 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1
0 0 0 0.6670 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1
0 0 0 0 0.0000 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1

The original image has 897-by-598 pixels. Tacking red, green
and blue vertically gives a 2691-by-598 matrix. Truncating all
but 12 singular values gives the left picture. 120 gives the right.
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Example: Correlations genes-proteines
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Value!
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Cancer research: microarrays (glass) with human genes are
exposed to healthy cells, then to sick ones. Make a SVD of the
data to find out which genes are important!




Deep Dream version

Which one is Hemingway?

NO. 1:

Kilimanjaro is a snow-covered mountain 19,710 feet high, and is said to
be the highest mountain in Africa. Its western summit is called the
Masai “Ngaje Ngai,” the House of God. Close to the western summit
there is the dried and frozen carcass of a leopard. No one has explained
what the leopard was seeking at that altitude.

NO. 2:

Kilimanjaro is a mountain of 19,710 feet covered with snow and is said
to be the highest mountain in Africa. The summit of the west is called
“Ngaje Ngai” in Masai, the house of God. Near the top of the west there
is a dry and frozen dead body of leopard. No one has ever explained
what leopard wanted at that altitude.

Before November 2016

Using language rule books:

Kilimanjaro is 19,710 feet of the mountain covered with snow, and it is
said that the highest mountain in Africa. Top of the west, “Ngaje Ngai”
in the Maasai language, has been referred to as the house of God. The
top close to the west, there is a dry, frozen carcass of a leopard. Whether
the leopard had what the demand at that altitude, there is no that
nobody explained.

Components for deep lear: |

* One neuron

— Example: Logistic regression

— Classification model (x feature vector,
(w,b) parameters, s smooth thresholding

z € R*,we RYbeR, f(x) =s(wlz+b)
= isti i 1
Logistic regression i) =
1+e=

— ML estimate of parameters (w,b) is a
convex optimization problem

1
o1 i
min inw +C E log(1 + e7¥% @),

i=1 UNIVERSITY

Single Layer Neural Networks
One Neuron

* One neuron
z € R we RYbeR, f(x) = s(wlz+b)

UNIVERSITY

Single Layer Neural Networks
Several Neurons

+ Several parallell neurons
z € R ye RF Be R, W — k x dmatrix

y=s(Wz + B)

« Elementwise smooth
thresholding — s

UNIVERSITY

Artificial Neural Networks
One hidden layer

» Multi-class classification
« One hidden layer

 Trained by back-
propagation

« Popular since the 1990ies

UNIVERSITY

Deep Neural Networks
Many layers

However

Naively implemented
would give to many
parameters

Example

1M pixel image
1M hidden layers

10"2parameters between
each pairs of layers

UNIVERSITY
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Basic idea of system identification

Measure U and y. Figure out a model of S, consistent with
measured data.

Important aspects:

» We can only measure the u and y in discrete time points
(sampling). Can be natural to use the discrete-time
models.

» The system is affected by interference and measurement
errors. We may need to signal models for dealing with this.

Example

A tank which attenuates flow variations in ¢q;. Characterization
of the tank system:

i‘h

A
h
| q2

> Input: g1
» Output: g2 and/or
» Internal variables / conditions: A

Step response

Step response for the tank ~'—————=———

Can give idea of the dominant time constant, static
reinforcement, character (overshoot or not)

Frequency response

For good signal-to-noise ratio, an estimate of G (iw) is obtained
directly from the amplitudes and phase positions of u, y

u(t) = Asinot
y(t) = A|G(iow)|sin(wt + arg G(iw))

How light affects pupil area
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Correlation analysis

Can we estimate the impulse response with other inputs?
» Impulse response formula in discrete time (T' =1, v =
noise):
o0
y(t) = D grut—k) + ()

k=1

» If v white noise with Ev2 = 1, then
Ry, (k) =Ey()u(t — k) = gp

» Covariance R,, estimated by N data points with




Example

Correlation analysis for - (in- and out-put data)
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Basic rules

Make experiments with conditions similar to the conditions in
which the model is to be used!

(Models from step response can be expected to work best on
the stage.)

Save some data for model validation, i.e. check the model with
data set different from the one that generated the model!
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Prediction Error Methods

Find the unknown parameters 6 by optimization:
min [[5(2,6) — y(®)]|
Here y(¢) is the measured output at time ¢ and y(¢, 8) is the

predicted output based on past measurements using a model
with parameter values 6.

Prediction Error Method with Repeated Simulation

For a nonlinear grey-box model

0= F(x,x,¢,0)
y(t) = h(x,t,0)

the unknown parameters 6 could be determined by the
prediction error method

mgin 19(t,6) — y(@)||

where the output prediction (¢, 8) is computed by simulation.

(Repeated simulation for different values of 6 could however be
very time-consuming.)

Population dynamics / Ecology

wsen skinn
Z

.
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Variations in the number of lynx (solid) and hares (dashed) in
Canada. Can you predict the periodic variations?

Population dynamics

N7 number of lynx, No number of hares
d
ENl(t) = (41— 71)N1(¥) + @1 N1(t) Na(¢)
d
ENz(t) = (A2 — 72)N1(t) — a2 N1(t)N2(2)

Simulation:

tusental individer




Mixing tanks in Skéarblacka paper factory Impulse response

- ) Litiumkoncentration (mg/liter)
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A linear transfer function of three series-connected mixing I / N
1 - 3 S
tanks has the form o+ 1) o
To determine 6, radioactive lithium is added in A. Radioactivity % 100 200 300 100 S0 80

was then measured by B as a function of time. tid (min)

In the lower picture, 6 has been chosen to adapt to the impulse

1
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Grey Models — the best of both worlds Nonlinear differential-algebraic equations (DAE)

Differential-algebraic equations, DAE
F(¢,z,u) =0, y=H(zu)

» White boxes: Physical laws provide some insight u: input, y: output, z: "internal variable"

» Black boxes: Statistics estimates complex relationships
» Gray boxes: Combine simplicity with insight
Special case: state model

%= f(x,u), y=h(xu)

u: input, y: output, x: state

Example: Pendulum Mathematical modelling — Lectures

A pendulum with length L and position coordinates (x, )
moves according to the equations

\{

Why modelling?

» Natural sciences: Models for analysis (understanding)
r=u y=v » Engineering sciences: Models for synthesis (design)
0= Ax =2y L2 =2 +y2 » Specification: Model of a good technical solution

Differentiating the fifth equation gives

v

Physical modeling (white boxes, Tuesday’s lecture)

0= xx +yy = ux +uvy Model derived from fundamental physical laws

Differentiating a second time gives

v

0 =ux + ux + vy + vy Statistical methods (black boxes, today)
9 9 9 Model derived from measurement data
= A+ yz) Toytut+u » Singular Value Decomposition (SVD)
=AL% - gy + u? +v? » Machine Learning
and a third time » System Identification / Time Series Analysis
0=L2%1—3gv

Finally, we have derivative expressions for all variables!

v

Combination of the two (gray boxes today)




