
Lecture 11

• Introduction to convex optimization

◦ Convex optimization modeling

◦ A model predictive control example

◦ Duality
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Optimization

• Consider the following optimization problem:

minimize f(x)
subject to x ∈ X

• Most probably this problem cannot be solved

• However, if f and X are convex, we can, even very large problems
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Convex optimization

minimize f(x)
subject to x ∈ X

• objective f is convex:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

if 0 ≤ α ≤ 1

• constraint set X is convex:

αx+ (1− α)y ∈ X

for every x, y ∈ X and α ∈ [0, 1]
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Convex sets

• a set X is convex if for every x, y ∈ X and θ ∈ [0, 1]:

θx+ (1− θ)y ∈ X

• “every line segment that connect any two points in X is in X”

A nonconvex set A convex set

A nonconvex set A nonconvex set
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Examples of convex sets

• affine subspaces {x | Ax = b}
• norm balls {x | ‖x‖ ≤ r} for some r > 0

• polytopic sets {x | Cx ≤ d}
• level sets {x | g(x) ≤ 0} of convex functions g

affine subspace norm ball polytope

5



Intersection and union

• the intersection X1 ∩X2 of two convex sets X1, X2 is convex

• the union X1 ∪X2 of two convex sets X1, X2 need not be convex

(intersection: darker gray, union: lighter gray)

• Example: Want x ∈ X1 and x ∈ X2 ⇒ want x ∈ X1 ∩X2
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Convex functions

• Convex functions satisfy Jensen’s inequality, i.e.,:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for all x, y and 0 ≤ α ≤ 1

• “the whole line between any two points on the graph of f is on or
above the graph”

a nonconvex function a convex function
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Epigraphs and convexity

• the epi-graph of f is the set above f , i.e., the set

epi f = {(x, r) | f(x) ≤ r}

• result: the function f is convex if and only epi f is a convex set

epif

nonconvex

epif

convex
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Examples of convex functions

• indicator functions of convex sets X

ιS(x) =

{
0 if x ∈ X
∞ else

• norms: ‖x‖ (e.g., 1-norm ‖x‖1 or 2-norm ‖x‖2)

• norm-squared: ‖x‖2
• (shortest) distance to convex set: distX(y) = infx∈X{‖x− y‖}
• linear functions: f(x) = qTx

• quadratic forms: f(x) = 1
2x

TQx with Q positive semi-definite

• compositions of convex f with affine operator: f(Lx− b)

‖x‖2 ‖x‖1 ‖x‖22
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Linear programming

• A special case of convex optimization is linear programming

• This is obtained if
• the objective f is linear
• the constraint set X = X1 ∩X2 with X1 affine and X2 polytope

• The linear program is:

minimize cTx
subject to Ax = b

Cx ≤ d
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Convex optimization

• Many problems can be modeled using convex optimization

• In many cases we can achieve state-of-the-art performance

• We will look at a couple of examples
• Signal reconstruction
• Image reconstruction
• Model predictive control of process industry site
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Optimization modeling

• will show how to model some problems using optimization

• in most examples, we use the following functions

‖ · ‖1, 1
2‖ · ‖

2
2

and often compose them with an affine operator Lx− b
• we will also use the following constraint sets

{x | Ax = b}, {x | Cx ≤ d}

• constructing convex optimization problem using these functions
only is very powerful and can model a wide variety of problems!
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0-norm

• in many applications we would ideally like to use the 0-norm

• the 0-norm ‖x‖0 counts the number of nonzero elements in x

• that is ‖x‖0 =
∑
i hi(xi) where

hi(xi) =

{
0 if xi = 0

1 else

• graphical representation

• it is obviously nonconvex

• often the 1-norm is used as a convex proxy for this

• why? 1-norm is convex envelope of ‖x‖0 + ι‖x‖≤1(x) for ‖x‖ ≤ 1
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Signal reconstruction

• in signal reconstruction, we have a noisy signal y

• assume that measurement from process with slow changes

• approximate with signal x that captures process behavior

• therefore: want neighboring time-steps to be close to each other

• we have two competing objectives, want x ≈ y and x vary slowly
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Signal reconstruction

• introduce difference operator D

D =

1 −1
. . .

. . .

1 −1


• then

Dx =

 x1 − x2
...

xn−1 − xn


• want Dx small and x ≈ y
• can you model this as an optimization problem?

• consider the optimization problem

minimize 1
2‖x− y‖

2
2 + λ‖Dx‖22

where y contains measurements and λ > 0 trades off objectives
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Numerical example

• we have y ∈ R300

• y constructed by random walk in R
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Result

minimize 1
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2
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Example

• what if we instead want piece-wise constant approximation?

• then we want Dx to be sparse

• how to model this?

• typically we want to minimize ‖Dx‖0
• nonconvex, use our convex proxy ‖Dx‖1
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Piece-wise linear approximation

• maybe we want a piece-wise linear approximation instead

• introduce the second order discrete difference

D2 =

1 −2 1
. . .

. . .
. . .

1 −2 1


• this is zero on any line

• how to model piece-wise linear approximation?

minimize 1
2‖x− y‖

2
2 + λ‖D2x‖1
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Smooth second derivative

• we might instead want a smooth second derivative

• how to model this?

minimize 1
2‖x− y‖

2
2 + λ‖D2x‖22
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Periodic disturbances

• assume that our signal is disturbed by a periodic signal pd ∈ Rn

• pd could model yearly/weekly/daily variations

• our measurement is still y

• we are interested in, say, a piece-wise linear estimation of y − p
• how to model this?

assume period is T

minimize 1
2‖x− (y − p)‖22 + λ‖D2x‖1

subject to pi = pi+kiT for i = 1, . . . , T as long as i+ kiT ≤ n

• x and p optimization variables! (p should estimate pd)
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Two-dimensional reconstruction

• can also reconstruct images (2D-signals)
• example: 90% of pixels in image lost

• reconstruct using difference in 2D (TV-norm)

minimize
n−1∑
i=1

m∑
j=1

|xi,j − xi+1,j |+
n∑
i=1

m−1∑
j=1

|xi,j − xi,j+1|

• known pixels are set to correct value
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Two-dimensional reconstruction

• example: 70% of pixels in image lost
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Two-dimensional reconstruction

• example: 70% of pixels in image lost
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Two-dimensional reconstruction

• example: 50% of pixels in image lost
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Two-dimensional reconstruction

• example: 50% of pixels in image lost
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Two-dimensional reconstruction

• example: 30% of pixels in image lost
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Two-dimensional reconstruction

• example: 30% of pixels in image lost
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Comparison to ground truth
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Modeling idea

If we want something to

• hold approximately, use ‖ · ‖22
• be sparse, use ‖ · ‖1
• enforce something, use constraints
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A model predictive control example

• Schematic view of production site:

• Maximize profit dispite disturbances in utilities

• Use buffer tanks and routing to achieve this

• Satisfy constraints for buffer levels and product rates

• Base routing and rate decisions on optimization problem solution!
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Model site dynamic behavior

Site model (mass balance for tanks, rates assumed static):

V1(t+ 1) = V1(t) + q1(t)− qm1 (t)− qin2 (t)− qin3 (t)− qin4 (t)

V2(t+ 1) = V2(t) + q2(t)− qm2 (t)− qin5 (t)

V3(t+ 1) = V3(t) + q3(t)− qm3 (t)− qin6 (t)
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Buffer tank constraints

V min
1 ≤ V1(t) ≤ V max

1

V min
2 ≤ V2(t) ≤ V max

2

V min
3 ≤ V3(t) ≤ V max

3
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Production rate constraints

• Want production rates qi to satisfy

qi(t) = 0 or qmin
i ≤ qi(t) ≤ qmax

i

where qmin
i > 0 (rather shut off than produce too little)

• But a cost li(t) is associated with shutting down:

li(t) =

{
li if qi(t) = 0

0 else
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Optimization formulation

• Can be modeled with the following constraints:

qmin
i + si(t) ≤ qi(t) ≤ qmax

i with si(t) = {0,−qmin
i }

and the additional objective cost that li‖si(t)‖0

si

li

cost

s
i

=
0

s
i

=
−

q
m

in
i

• Both the cost and the constraint are nonconvex!
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Convex relaxation

• Relax the inclusion si(t) ∈ {0,−qmin
i } to si(t) ∈ [0,−qmin

i ]

• Approximate the cost li‖si(t)‖0 with l̂i‖si(t)‖1

si

li

cost

s
i

=
0

s
i

=
−

q
m

in
i

• This convex formulation very often gives either

si = 0 (qi ∈ [qmin
i , qmax

i ]) or si = −qmin
i (qi = 0)
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Utility constraints

Area 1 2 3 4 5 6
Steam HP x x
Steam MP x x x
Cooling water x x x x x x

Constraints due to shared utilities

c11q1(t) + c13q3(t) ≤ U1(t)

c22q2(t) + c24q4(t) + c26q6(t) ≤ U2(t)

6∑
i=1

c3iqi(t) ≤ U3(t)
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Cost function

• We have the cost from the start-up li(t) for all units i and times t

• We also want to maximize profit piq
m
i (t) for all units i and times t

• Combined cost function to maximize:

6∑
i=1

N∑
t=0

(piq
m
i (t)− li‖si(t)‖1)
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MPC of site

• Consider the full optimization problem:

maximize
6∑
i=1

N∑
t=0

(piq
m
i (t)− li‖si(t)‖1)

subject to V1(t+ 1) = V1(t) + q1(t)− qm1 (t)− qin2 (t)− qin3 (t)− qin4 (t)
V2(t+ 1) = V2(t) + q2(t)− qm2 (t)− qin5 (t)
V3(t+ 1) = V3(t) + q3(t)− qm3 (t)− qin6 (t)
V min
j ≤ Vj(t) ≤ V max

j

si(t) = [0,−qmin
i ]

qmin
i + si(t) ≤ qi(t) ≤ qmax

i

c11q1(t) + c13q3(t) ≤ U1(t)
c22q2(t) + c24q4(t) + c26q6(t) ≤ U2(t)∑6
i=1 c3iqi(t) ≤ U3(t)

for j = 1, 2, 3, i = 1, . . . , 6, t = 1, . . . , N

• Solve this repeaditely with measured Vi(0) and estimated Uj(t)
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Solution to one problem
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Nonconvex problem can be solved using MIQP.
This convex relaxation gives the same solutions. Much faster to solve.
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Linear Programming Example

Product # of items Profit / item
Garden Furniture 1 x1 c1
Garden Furniture 2 x2 c2
Sled 1 x3 c3
Sled 2 x4 c4

Constraints for sub-division 1:

7x1 + 10x2 ≤ 100 (Sawing)

16x1 + 12x2 ≤ 135 (Assembling)

Constraints for sub-division 2:

10x3 + 9x4 ≤ 70 (Sawing)

6x3 + 9x4 ≤ 60 (Assembling)

Painting Constraint:

5x1 + 3x2 + 3x3 + 2x4 ≤ 45
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Linear Programming Example

Mathematical formulation:

Maximize c1x1 + c2x2 + c3x3 + c4x4

subject to 7x1 + 10x2 ≤ 100
16x1 + 12x2 ≤ 135
10x3 + 9x4 ≤ 70
6x3 + 9x4 ≤ 60
5x1 + 3x2 + 3x3 + 2x4 ≤ 45
x ≥ 0
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Numerical Results

Optimal solution for Division 1 (left) and Division 2 (right). Common
constraint active (i.e. equality holds).
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Dual Variables

• Dual variables are the marginal prices for resources

• If the capacity for a resource is increased by 1, the total profit is
increased by the corresponding dual variable

• This gives insight to which resource to increase to gain most
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Numerical Results

Optimal dual variables and their respective constraints:

Constraint Dual variable
7x1 + 10x2 ≤ 100 1.04
16x1 + 12x2 ≤ 135 0
10x3 + 9x4 ≤ 70 0
6x3 + 9x4 ≤ 60 0.4

5x1 + 3x2 + 3x3 + 2x4 ≤ 45 3.2

Optimal value: p∗ = cTx∗ = 272

If common (painting) constraint capacity increased to 46, optimal
value becomes 272 + 3.2 = 275.2

Company would gain most by increasing painting capacity
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Linear Programming Duality

Linear Program:

p∗ =

{
max
x

cTx

subject to Ax ≤ b, x ≥ 0

where p∗ = cTx∗ is the optimal value attained by x∗.

For the constraints Ax ≤ b, introduce dual variables λ ≥ 0 and
construct the corresponding dual function g(λ):

g(λ) = max
x�0

[
cTx+ λT (b−Ax)

]
We have g(λ) ≥ p∗. Let x? be optimal and λ ≥ 0, then
λT (b−Ax?) ≥ 0. Therefore

g(λ) = max
x�0

[
cTx+ λT (b−Ax)

]
≥ cTx? + λT (b−Ax?) ≥ cTx?
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Linear Programming Duality cont’d

Tightest upper bound to p∗ obtained by minimizing g(λ):

d∗ = min
λ≥0

g(λ) = min
λ≥0

max
x≥0

[
cTx+ λT (b−Ax)

]
Optimal value d∗ for this min-max problem is attained by x = x∗ and
λ = λ∗.

Further we have that p∗ = cTx∗ = d∗. This equality is referred to as
strong duality

Dual optimal values and d∗ can be obtained by solving

min
λ

bTλ

subject to ATλ ≥ c,λ ≥ 0

Note symmetry to primal problem
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Linear Programming Duality

max
x

cTx = min
λ

bTλ

with Ax ≤ b with ATλ ≥ c
x ≥ 0 λ ≥ 0
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Lecture 10 and 11
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Lecture 11
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• Duality
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