Lecture 11

- Introduction to convex optimization
- Convex optimization modeling
- A model predictive control example
- Duality

Optimization

- Consider the following optimization problem:

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in X
\end{array}
$$

- Most probably this problem cannot be solved
- However, if f and X are convex, we can, even very large problems

Convex optimization

minimize $\quad f(x)$
subject to $\quad x \in X$

- objective f is convex:

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

if $0 \leq \alpha \leq 1$

- constraint set X is convex:

$$
\alpha x+(1-\alpha) y \in X
$$

for every $x, y \in X$ and $\alpha \in[0,1]$

Convex sets

- a set X is convex if for every $x, y \in X$ and $\theta \in[0,1]$:

$$
\theta x+(1-\theta) y \in X
$$

- "every line segment that connect any two points in X is in X "

A nonconvex set

A nonconvex set

A convex set

A nonconvex set

Examples of convex sets

- affine subspaces $\{x \mid A x=b\}$
- norm balls $\{x \mid\|x\| \leq r\}$ for some $r>0$
- polytopic sets $\{x \mid C x \leq d\}$
- level sets $\{x \mid g(x) \leq 0\}$ of convex functions g

affine subspace

Intersection and union

- the intersection $X_{1} \cap X_{2}$ of two convex sets X_{1}, X_{2} is convex
- the union $X_{1} \cup X_{2}$ of two convex sets X_{1}, X_{2} need not be convex

(intersection: darker gray, union: lighter gray)
- Example: Want $x \in X_{1}$ and $x \in X_{2} \Rightarrow$ want $x \in X_{1} \cap X_{2}$

Convex functions

- Convex functions satisfy Jensen's inequality, i.e.,:

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

for all x, y and $0 \leq \alpha \leq 1$

- "the whole line between any two points on the graph of f is on or above the graph"

a nonconvex function

a convex function

Epigraphs and convexity

- the epi-graph of f is the set above f, i.e., the set

$$
\text { epi } f=\{(x, r) \mid f(x) \leq r\}
$$

- result: the function f is convex if and only epi f is a convex set

Examples of convex functions

- indicator functions of convex sets X

$$
\iota_{\mathcal{S}}(x)= \begin{cases}0 & \text { if } x \in X \\ \infty & \text { else }\end{cases}
$$

- norms: $\|x\|$ (e.g., 1-norm $\|x\|_{1}$ or 2-norm $\|x\|_{2}$)
- norm-squared: $\|x\|^{2}$
- (shortest) distance to convex set: $\operatorname{dist}_{X}(y)=\inf _{x \in X}\{\|x-y\|\}$
- linear functions: $f(x)=q^{T} x$
- quadratic forms: $f(x)=\frac{1}{2} x^{T} Q x$ with Q positive semi-definite
- compositions of convex f with affine operator: $f(L x-b)$

$\|x\|_{2}^{2}$

Linear programming

- A special case of convex optimization is linear programming
- This is obtained if
- the objective f is linear
- the constraint set $X=X_{1} \cap X_{2}$ with X_{1} affine and X_{2} polytope
- The linear program is:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& C x \leq d
\end{array}
$$

Convex optimization

- Many problems can be modeled using convex optimization
- In many cases we can achieve state-of-the-art performance
- We will look at a couple of examples
- Signal reconstruction
- Image reconstruction
- Model predictive control of process industry site

Lecture 11

- Introduction to convex optimization
- Convex optimization modeling
- A model predictive control example
- Duality

Optimization modeling

- will show how to model some problems using optimization
- in most examples, we use the following functions

$$
\|\cdot\|_{1}, \quad \frac{1}{2}\|\cdot\|_{2}^{2}
$$

and often compose them with an affine operator $L x-b$

- we will also use the following constraint sets

$$
\{x \mid A x=b\}, \quad\{x \mid C x \leq d\}
$$

- constructing convex optimization problem using these functions only is very powerful and can model a wide variety of problems!

0-norm

- in many applications we would ideally like to use the 0-norm
- the 0 -norm $\|x\|_{0}$ counts the number of nonzero elements in x
- that is $\|x\|_{0}=\sum_{i} h_{i}\left(x_{i}\right)$ where

$$
h_{i}\left(x_{i}\right)= \begin{cases}0 & \text { if } x_{i}=0 \\ 1 & \text { else }\end{cases}
$$

- graphical representation

- it is obviously nonconvex
- often the 1-norm is used as a convex proxy for this
- why? 1 -norm is convex envelope of $\|x\|_{0}+\iota_{\|x\| \leq 1}(x)$ for $\|x\| \leq 1$

Signal reconstruction

- in signal reconstruction, we have a noisy signal y
- assume that measurement from process with slow changes
- approximate with signal x that captures process behavior
- therefore: want neighboring time-steps to be close to each other
- we have two competing objectives, want $x \approx y$ and x vary slowly

Signal reconstruction

- introduce difference operator D

$$
D=\left[\begin{array}{llll}
1 & -1 & & \\
& \ddots & \ddots & \\
& & 1 & -1
\end{array}\right]
$$

- then

$$
D x=\left[\begin{array}{c}
x_{1}-x_{2} \\
\vdots \\
x_{n-1}-x_{n}
\end{array}\right]
$$

- want $D x$ small and $x \approx y$
- can you model this as an optimization problem?

Signal reconstruction

- introduce difference operator D

$$
D=\left[\begin{array}{llll}
1 & -1 & & \\
& \ddots & \ddots & \\
& & 1 & -1
\end{array}\right]
$$

- then

$$
D x=\left[\begin{array}{c}
x_{1}-x_{2} \\
\vdots \\
x_{n-1}-x_{n}
\end{array}\right]
$$

- want $D x$ small and $x \approx y$
- can you model this as an optimization problem?
- consider the optimization problem

$$
\operatorname{minimize} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\|D x\|_{2}^{2}
$$

where y contains measurements and $\lambda>0$ trades off objectives

Numerical example

- we have $y \in \mathbb{R}^{300}$
- y constructed by random walk in \mathbb{R}

Result

$$
\operatorname{minimize} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\|D x\|_{2}^{2}
$$

Example

- what if we instead want piece-wise constant approximation?
- then we want $D x$ to be sparse
- how to model this?

Example

- what if we instead want piece-wise constant approximation?
- then we want $D x$ to be sparse
- how to model this?
- typically we want to minimize $\|D x\|_{0}$
- nonconvex, use our convex proxy $\|D x\|_{1}$

Result

$$
\operatorname{minimize} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\|D x\|_{1}
$$

Piece-wise linear approximation

- maybe we want a piece-wise linear approximation instead
- introduce the second order discrete difference

$$
D_{2}=\left[\begin{array}{ccccc}
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1
\end{array}\right]
$$

- this is zero on any line
- how to model piece-wise linear approximation?

Piece-wise linear approximation

- maybe we want a piece-wise linear approximation instead
- introduce the second order discrete difference

$$
D_{2}=\left[\begin{array}{ccccc}
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1
\end{array}\right]
$$

- this is zero on any line
- how to model piece-wise linear approximation?

$$
\operatorname{minimize} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{1}
$$

Result

$$
\operatorname{minimize} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{1}
$$

Result

$$
\operatorname{minimize} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{1}
$$

Result

$$
\operatorname{minimize} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{1}
$$

Result

$$
\operatorname{minimize} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{1}
$$

Smooth second derivative

- we might instead want a smooth second derivative
- how to model this?

Smooth second derivative

- we might instead want a smooth second derivative
- how to model this?

$$
\text { minimize } \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{2}^{2}
$$

Result

$$
\operatorname{minimize} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{2}^{2}
$$

Result

$$
\text { minimize } \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{2}^{2}
$$

Result

$$
\operatorname{minimize} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{2}^{2}
$$

Result

$$
\operatorname{minimize} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{2}^{2}
$$

Periodic disturbances

- assume that our signal is disturbed by a periodic signal $p_{d} \in \mathbb{R}^{n}$
- p_{d} could model yearly/weekly/daily variations
- our measurement is still y
- we are interested in, say, a piece-wise linear estimation of $y-p$
- how to model this?

Periodic disturbances

- assume that our signal is disturbed by a periodic signal $p_{d} \in \mathbb{R}^{n}$
- p_{d} could model yearly/weekly/daily variations
- our measurement is still y
- we are interested in, say, a piece-wise linear estimation of $y-p$
- how to model this? assume period is T

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\|x-(y-p)\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{1} \\
\text { subject to } & p_{i}=p_{i+k_{i} T} \text { for } i=1, \ldots, T \text { as long as } i+k_{i} T \leq n
\end{array}
$$

- x and p optimization variables! (p should estimate p_{d})

Result

minimize $\quad \frac{1}{2}\|x-(y-p)\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{1}$
subject to $\quad p_{i}=p_{i+k_{i} T}$ for $i=1, \ldots, T$ as long as $i+k_{i} T \leq n$

Result

minimize $\quad \frac{1}{2}\|x-(y-p)\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{1}$
subject to $\quad p_{i}=p_{i+k_{i} T}$ for $i=1, \ldots, T$ as long as $i+k_{i} T \leq n$

Result

minimize $\quad \frac{1}{2}\|x-(y-p)\|_{2}^{2}+\lambda\left\|D_{2} x\right\|_{1}$
subject to $\quad p_{i}=p_{i+k_{i} T}$ for $i=1, \ldots, T$ as long as $i+k_{i} T \leq n$

Two-dimensional reconstruction

- can also reconstruct images (2D-signals)
- example: 90% of pixels in image lost

Two-dimensional reconstruction

- can also reconstruct images (2D-signals)
- example: 90% of pixels in image lost

- reconstruct using difference in 2D (TV-norm)

$$
\operatorname{minimize} \sum_{i=1}^{n-1} \sum_{j=1}^{m}\left|x_{i, j}-x_{i+1, j}\right|+\sum_{i=1}^{n} \sum_{j=1}^{m-1}\left|x_{i, j}-x_{i, j+1}\right|
$$

- known pixels are set to correct value

Two-dimensional reconstruction

- example: 70% of pixels in image lost

Two-dimensional reconstruction

- example: 70% of pixels in image lost

Two-dimensional reconstruction

- example: 50% of pixels in image lost

Two-dimensional reconstruction

- example: 50% of pixels in image lost

Two-dimensional reconstruction

- example: 30% of pixels in image lost

Two-dimensional reconstruction

- example: 30% of pixels in image lost

Comparison to ground truth

Modeling idea

If we want something to

- hold approximately, use $\|\cdot\|_{2}^{2}$
- be sparse, use $\|\cdot\|_{1}$
- enforce something, use constraints

Lecture 11

- Introduction to convex optimization
- Convex optimization modeling
- A model predictive control example
- Duality

A model predictive control example

- Schematic view of production site:

- Maximize profit dispite disturbances in utilities
- Use buffer tanks and routing to achieve this
- Satisfy constraints for buffer levels and product rates
- Base routing and rate decisions on optimization problem solution!

Model site dynamic behavior

Site model (mass balance for tanks, rates assumed static):

$$
\begin{aligned}
& V_{1}(t+1)=V_{1}(t)+q_{1}(t)-q_{1}^{m}(t)-q_{2}^{\mathrm{in}}(t)-q_{3}^{\mathrm{in}}(t)-q_{4}^{\mathrm{in}}(t) \\
& V_{2}(t+1)=V_{2}(t)+q_{2}(t)-q_{2}^{m}(t)-q_{5}^{\text {in }}(t) \\
& V_{3}(t+1)=V_{3}(t)+q_{3}(t)-q_{3}^{m}(t)-q_{6}^{\text {in }}(t)
\end{aligned}
$$

Buffer tank constraints

$$
\begin{aligned}
& V_{1}^{\min } \leq V_{1}(t) \leq V_{1}^{\max } \\
& V_{2}^{\min } \leq V_{2}(t) \leq V_{2}^{\max } \\
& V_{3}^{\min } \leq V_{3}(t) \leq V_{3}^{\max }
\end{aligned}
$$

Production rate constraints

- Want production rates q_{i} to satisfy

$$
q_{i}(t)=0 \quad \text { or } \quad q_{i}^{\min } \leq q_{i}(t) \leq q_{i}^{\max }
$$

where $q_{i}^{\text {min }}>0$ (rather shut off than produce too little)

- But a cost $l_{i}(t)$ is associated with shutting down:

$$
l_{i}(t)= \begin{cases}l_{i} & \text { if } q_{i}(t)=0 \\ 0 & \text { else }\end{cases}
$$

Optimization formulation

- Can be modeled with the following constraints:

$$
q_{i}^{\min }+s_{i}(t) \leq q_{i}(t) \leq q_{i}^{\max } \text { with } s_{i}(t)=\left\{0,-q_{i}^{\min }\right\}
$$

and the additional objective cost that $l_{i}\left\|s_{i}(t)\right\|_{0}$

- Both the cost and the constraint are nonconvex!

Convex relaxation

- Relax the inclusion $s_{i}(t) \in\left\{0,-q_{i}^{\text {min }}\right\}$ to $s_{i}(t) \in\left[0,-q_{i}^{\text {min }}\right]$
- Approximate the cost $l_{i}\left\|s_{i}(t)\right\|_{0}$ with $\hat{l}_{i}\left\|s_{i}(t)\right\|_{1}$

- This convex formulation very often gives either

$$
s_{i}=0\left(q_{i} \in\left[q_{i}^{\min }, q_{i}^{\max }\right]\right) \quad \text { or } \quad s_{i}=-q_{i}^{\min }\left(q_{i}=0\right)
$$

Utility constraints

Area	1	2	3	4	5	6
Steam HP	\times		\times			
Steam MP		\times		\times		x
Cooling water	\times	\times	\times	\times	\times	\times

Constraints due to shared utilities

$$
\begin{aligned}
c_{11} q_{1}(t)+c_{13} q_{3}(t) & \leq U_{1}(t) \\
c_{22} q_{2}(t)+c_{24} q_{4}(t)+c_{26} q_{6}(t) & \leq U_{2}(t) \\
\sum_{i=1}^{6} c_{3 i} q_{i}(t) & \leq U_{3}(t)
\end{aligned}
$$

Cost function

- We have the cost from the start-up $l_{i}(t)$ for all units i and times t
- We also want to maximize profit $p_{i} q_{i}^{m}(t)$ for all units i and times t
- Combined cost function to maximize:

$$
\sum_{i=1}^{6} \sum_{t=0}^{N}\left(p_{i} q_{i}^{m}(t)-l_{i}\left\|s_{i}(t)\right\|_{1}\right)
$$

MPC of site

- Consider the full optimization problem:

$$
\begin{array}{cl}
\text { maximize } & \sum_{i=1}^{6} \sum_{t=0}^{N}\left(p_{i} q_{i}^{m}(t)-l_{i}\left\|s_{i}(t)\right\|_{1}\right) \\
\text { subject to } & V_{1}(t+1)=V_{1}(t)+q_{1}(t)-q_{1}^{m}(t)-q_{2}^{\text {in }}(t)-q_{3}^{\mathrm{in}}(t)-q_{4}^{\mathrm{in}}(t) \\
& V_{2}(t+1)=V_{2}(t)+q_{2}(t)-q_{2}^{m}(t)-q_{5}^{\mathrm{in}}(t) \\
& V_{3}(t+1)=V_{3}(t)+q_{3}(t)-q_{3}^{m}(t)-q_{6}^{\text {in }}(t) \\
& V_{j}^{\min } \leq V_{j}(t) \leq V_{j}^{\max } \\
& s_{i}(t)=\left[0,-q_{i}^{\min }\right] \\
& q_{i}^{\min }+s_{i}(t) \leq q_{i}(t) \leq q_{i}^{\max } \\
& c_{11} q_{1}(t)+c_{13} q_{3}(t) \leq U_{1}(t) \\
& c_{22} q_{2}(t)+c_{24} q_{4}(t)+c_{26} q_{6}(t) \leq U_{2}(t) \\
& \sum_{i=1}^{6} c_{3 i} q_{i}(t) \leq U_{3}(t)
\end{array}
$$

for $j=1,2,3, i=1, \ldots, 6, t=1, \ldots, N$

- Solve this repeaditely with measured $V_{i}(0)$ and estimated $U_{j}(t)$

Solution to one problem

Nonconvex problem can be solved using MIQP.
This convex relaxation gives the same solutions. Much faster to solve.

Lecture 11

- Introduction to convex optimization
- Convex optimization modeling
- A model predictive control example
- Duality

Linear Programming Example

Product	$\#$ of items	Profit / item
Garden Furniture 1	x_{1}	c_{1}
Garden Furniture 2	x_{2}	c_{2}
Sled 1	x_{3}	c_{3}
Sled 2	x_{4}	c_{4}

Constraints for sub-division 1 :

$$
\begin{aligned}
7 x_{1}+10 x_{2} & \leq 100 \\
16 x_{1}+12 x_{2} & \leq 135
\end{aligned}
$$

(Sawing)
(Assembling)

Constraints for sub-division 2:

$$
\begin{align*}
10 x_{3}+9 x_{4} & \leq 70 \tag{Sawing}\\
6 x_{3}+9 x_{4} & \leq 60
\end{align*}
$$

(Assembling)
Painting Constraint:

$$
5 x_{1}+3 x_{2}+3 x_{3}+2 x_{4} \leq 45
$$

Linear Programming Example

Mathematical formulation:

$$
\begin{array}{ll}
\text { Maximize } & c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4} \\
\text { subject to } & 7 x_{1}+10 x_{2} \leq 100 \\
& 16 x_{1}+12 x_{2} \leq 135 \\
& 10 x_{3}+9 x_{4} \leq 70 \\
& 6 x_{3}+9 x_{4} \leq 60 \\
& 5 x_{1}+3 x_{2}+3 x_{3}+2 x_{4} \leq 45 \\
& x \geq 0
\end{array}
$$

Numerical Results

Optimal solution for Division 1 (left) and Division 2 (right). Common constraint active (i.e. equality holds).

Dual Variables

- Dual variables are the marginal prices for resources
- If the capacity for a resource is increased by 1 , the total profit is increased by the corresponding dual variable
- This gives insight to which resource to increase to gain most

Numerical Results

Optimal dual variables and their respective constraints:

$$
\begin{array}{rl}
\text { Constraint } & \text { Dual variable } \\
7 x_{1}+10 x_{2} \leq 100 & 1.04 \\
16 x_{1}+12 x_{2} \leq 135 & 0 \\
10 x_{3}+9 x_{4} \leq 70 & 0 \\
6 x_{3}+9 x_{4} \leq 60 & 0.4 \\
5 x_{1}+3 x_{2}+3 x_{3}+2 x_{4} \leq 45 & 3.2
\end{array}
$$

Optimal value: $p^{*}=c^{T} x^{*}=272$
If common (painting) constraint capacity increased to 46 , optimal value becomes $272+3.2=275.2$

Company would gain most by increasing painting capacity

Linear Programming Duality

Linear Program:

$$
p^{*}= \begin{cases}\max _{x} & c^{T} x \\ \text { subject to } & A x \leq b, x \geq 0\end{cases}
$$

where $p^{*}=c^{T} x^{*}$ is the optimal value attained by x^{*}.
For the constraints $A x \leq b$, introduce dual variables $\lambda \geq 0$ and construct the corresponding dual function $g(\lambda)$:

$$
g(\lambda)=\max _{x \succeq 0}\left[c^{T} x+\lambda^{T}(b-A x)\right]
$$

We have $g(\lambda) \geq p^{*}$. Let x^{\star} be optimal and $\lambda \geq 0$, then $\lambda^{T}\left(b-A x^{\star}\right) \geq 0$. Therefore

$$
g(\lambda)=\max _{x \succeq 0}\left[c^{T} x+\lambda^{T}(b-A x)\right] \geq c^{T} x^{\star}+\lambda^{T}\left(b-A x^{\star}\right) \geq c^{T} x^{\star}
$$

Linear Programming Duality cont'd

Tightest upper bound to p^{*} obtained by minimizing $g(\lambda)$:

$$
d^{*}=\min _{\lambda \geq 0} g(\lambda)=\min _{\lambda \geq 0} \max _{x \geq 0}\left[c^{T} x+\lambda^{T}(b-A x)\right]
$$

Optimal value d^{*} for this min-max problem is attained by $x=x^{*}$ and $\lambda=\lambda^{*}$.

Further we have that $p^{*}=c^{T} x^{*}=d^{*}$. This equality is referred to as strong duality
Dual optimal values and d^{*} can be obtained by solving

$$
\begin{array}{ll}
\min _{\lambda} & b^{T} \lambda \\
\text { subject to } & A^{T} \lambda \geq c, \lambda \geq 0
\end{array}
$$

Note symmetry to primal problem

Linear Programming Duality

$$
\begin{array}{clll}
\max _{x} & c^{T} x & =\min _{\lambda} & b^{T} \lambda \\
\text { with } & A x \leq b \\
& x \geq 0 & \text { with } & A^{T} \lambda \geq c \\
& & \lambda \geq 0
\end{array}
$$

Lecture 10 and 11

Lecture 10

- Linear Programming (LP)
- LP in production planning example
- Model Predictive Control
- A portfolio optimization problem

Lecture 11

- Introduction to convex optimization
- Convex optimization modeling
- A model predictive control example
- Duality

