
FRTN20	

Lecture	2	
	

Discrete	Production	Plants	
	

Introduction	
A	discrete	production	process	is	the	assembly	of	pieces	and	parts	into	products	and	the	
product	 result	 as	 a	 discrete	 entity.	 	 Discrete	 processes	 deal	with	material	 that	 can	 be	
counted.	 The	 equipment	used	 in	 the	process	 do	not	work	 in	 a	 steady	 state	mode,	 but	
rather	in	a	startup	–	operate	–	shut	down	mode.	
	
An	 example	 of	 a	 discrete	 production	 process	 is	 the	 automotive	 industry,	 e.g.	 the	
production	of	cars,	see	Figure	1.	The	production	line	starts	with	the	truck	coming	in	with	
raw	material	such	as	metallic	sheets.	The	first	work	cell	performs	Stamping.	A	stamping	
die	is	a	specialized	tool	used	to	cut	or	shape	materials	using	a	press.	The	second	work	
cell	is	the	Body	in	white,	in	which	the	remaining	activities	in	the	production	of	a	vehicle	
body	are	performed.	After	Body	 in	White,	 the	Paintwork	 takes	place;	 here	 the	vehicle	
body	 is	 painted	 in	 the	 correct	 color.	 The	 next	 to	 last	 work	 cell	 is	 the	 Body	 assembly	
where	 the	 interior	 of	 the	 car	 is	 installed,	 e.g.,	 dashboard,	 gear,	 seats	 and	 doors.	 After	
inspection,	the	cars	are	loaded	on	a	truck	for	shipment	to	the	retailer	or	customer.		
	

	
	
	

Figure	1:	A	schema	of	a	discrete	production	plant.	
	



FRTN20	

There	are	a	number	of	characteristics	typical	to	discrete	processes:	
• The	product	is	a	discrete	entity.		
• Assembly-oriented	production.	
• Staged	production	through	work	cells	
• Well-defined	production	runs.	
• The	process	is	most	often	“visible”.	
• The	equipment	operates	in	on-off	manner.	
• The	production	process	is	sequential.		

	

Control	of	Discrete	Production	Plants	
Discrete	manufacturing	 is	 typically	 assembly-line	 oriented.	 It	 involves	 the	progressive	
assembly	of	 finished	products	via	a	number	of	work	cells,	each	providing	a	predefined	
set	of	mechanical	operations.	The	equipment	performing	 these	operations	operates	 in	
on-off	 manner.	 In	 order	 to	 structure	 the	 on-off	 of	 the	 machines	 sequential	 control	
languages	are	used.	
	
The	basic	device	invented	for	control	of	discrete	production	processes	is	the	automatic	
switch	and	interconnected	sequences	of	automatic	switches.	The	first	automatic	switch	
to	 be	 extensively	 used	 for	 control	 of	 discrete	 production	 processes	 was	 the	
electromechanical	 relay,	 see	 Figure	 2.	 The	 electromechanical	 relays	 were	 typically	
assembled	on	relay	panels	 in	a	manner	that	would	accomplish	the	desired	automation	
steps,	referred	to	as	“relay	ladders”.		
	

	
	

Figure	2:	Electromechanical	relay	
	



FRTN20	

Formal	specification	languages	and	formal	modeling	techniques	are	used	to	describe	the	
behaviour	of	the	equipment	and/or	production	process.	Formal	analysis	techniques	are	
then	 used	 to	 verify	 certain	 critical	 properties.	 A	 number	 of	 approaches	 have	 been	
developed.	They	are	based	on;	logics,	finite	state	machines,	and	Petri	Nets.		
	
There	are	different	tools	and	languages	for	implementation	of	discrete	controllers.	With	
better	abstraction	and	structuring	possibilities	it	is	easier	to	get	a	good	overview	of	the	
control	 problem	 and	 the	 implementation	 is	 drastically	 simplified.	 Most	 of	 these	 tools	
and	 languages	are	graphical	programming	 languages.	Grafcet	 is	one	example	of	such	a	
language.	Grafcet	is	now	part	of	the	IEC	1131-3	standard	(later	renamed	IEC	61131-3),	
under	 the	 name	 Sequential	 Function	 Charts	 (SFC).	 JGrafchart	 is	 a	 toolbox	 based	 on	
Grafcet,	 implemented	 in	 Java.	 JGrafchart	 was	 developed	 at	 Department	 of	 Automatic	
Control,	LTH,	Lund	University.			
	

Logic	
The	concept	used	in	the	construction	of	relay	ladders	is	boolean	logic.	In	boolean	logic,	
the	variables	are	either	true	or	false.	Boolean	logic	is	named	after	George	Boole	(1815-
1864),	who	first	defined	an	algebraic	system	of	 logic	 in	the	mid-19th	century.	Boolean	
logic	is	based	on	three	operations;	and,	or,	not.		
	
	
	
	
	
	
	
	
	
	
	
The	operations	can	be	represented	by	graphical	symbols.	Figure	3	shows	the	symbols,	
the	American	representation	to	the	right	and	the	Swedish	representation	to	the	left.	
	

	
Figure	3:	Boolean	logic	symbols	

Three	types	of	
operations	

	 	 	

AND	 𝑎 ∙ 𝑏	 a	and	b	 a∧ b	

OR	 a	+	b	 a	or	b	 a∨ b	

NOT	 𝑎 (𝑜𝑟 𝑎!)	 not	a	 !a	



FRTN20	

	
	
	
	
	In	logic	the	commutative,	associative,	distributive	laws	and	De	Morgan’s	law	are	used.				
	
	
Commutative	 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎	
Associative	 𝑎 ∙ 𝑏 ∙ 𝑐 = (𝑎 ∙ 𝑏) ∙ 𝑐	
Distributive	 𝑎 ∙ 𝑏 + 𝑐 = 𝑎 ∙ 𝑏 + 𝑎 ∙ 𝑐	
De	Morgan	 𝑎 + 𝑏 = 𝑎 ∙ 𝑏, 𝑎 ∙ 𝑏 = 𝑎 + 𝑏	
	
In	 the	 1960s	 the	 digital	 computer	 technology	 started	 to	 be	 popular	 for	 many	
applications,	 so	 also	 for	 the	 construction	 of	 relay	 ladders,	 this	 was	 referred	 to	 as	
“Programmable	Logic	Controllers	(PLC)”.		The	initial	language	of	PLC	was	called	ladder	
logic.		
	
Today	there	exist	an	international	standard,	IEC	1131-3,	for	PLC	programming	languages.	
It	 specifies	 the	 syntax,	 semantics	 and	 display	 for	 the	 following	 PLC	 programming	
languages:	

• Ladder	diagram	
• Structured	text	
• Instruction	list	
• Function	Block	Diagram	
• Sequential	Function	Charts	

	

Finite	State	Machines	
The	classical	models	for	describing	sequential	systems	are	state	machines.	Two	different	
types	 exist;	 Mealy	machines	 and	Moore	machines.	 The	 output	 from	 a	Mealy-machine	
depends	on	the	internal	state	and	the	input	whereas	the	output	from	a	Moore	machine	
depends	only	on	the	internal	state.	
	
In	 Figure	 4	 a	Mealy-machine	 (left)	 and	 the	 corresponding	Moore-machine	 (right)	 are	
shown.	The	two	state	machines	have	two	inputs,	a	and	b,	and	two	outputs,	z0	and	z1.	
	

	
Figure	4:	A	Mealy-machine	(left)	and	a	Moore-machine	(right).	



FRTN20	

	
A	common	application	in	today’s	vehicles	is	the	cruise	control.	The	cruise	control	system	
has	a	human-machine	interface	that	allows	the	driver	to	communicate	with	the	system.	
There	are	many	ways	to	implement	this	system;	one	version	is	 illustrated	by	the	finite	
state	machine	in	Figure	5.	When	the	driver	sets	the	speed	of	the	vehicle,	the	vehicle	goes	
into	the	Cruise	state.	When	the	vehicle	 is	 in	the	Cruise	state,	 the	driver	can	go	back	to	
manual	driving	by	giving	the	command	cancel.	If	the	driver	hits	the	breaks	while	being	
in	the	Cruise	state,	 the	vehicle	reduces	the	speed.	 	When	the	driver	 let	go	of	the	break	
the	car	goes	back	to	the	Cruise	state	and	the	previous	set	speed.	The	driver	also	has	the	
option	of	completely	switching	the	Cruise	controller	off.		
	

															 	
Figure	5:	The	state	machine	of	a	cruise	controller	(left)	and	the	operator	commands	in	

the	vehicle.	

Petri	Nets	
Petri	 nets	 were	 proposed	 by	 the	 German	 mathematician	 Carl	 Adam	 Petri	 in	 the	
beginning	 of	 the	 1960s.	 Petri	 wanted	 to	 define	 a	 general	 purpose	 graphical	 and	
mathematical	 model	 describing	 relations	 between	 conditions	 and	 events.	 The	
mathematical	modeling	ability	of	Petri	nets	makes	it	possible	to	set	up	state	equations,	
algebraic	 equations,	 and	other	models	 governing	 the	behavior	of	 the	modeled	 system.	
The	graphical	feature	makes	Petri	nets	suitable	for	visualization	and	simulation.	
	
The	 Petri	 net	model	 has	 two	main	 interesting	 characteristics.	 Firstly,	 it	 is	 possible	 to	
visualize	behavior	like	parallelism,	concurrency,	synchronization	and	resource	sharing.	
Secondly,	there	exists	a	large	number	of	theoretical	methods	for	analysis	of	these	nets.	
Petri	 nets	 can	 be	 used	 at	 all	 stages	 of	 system	 development:	 modeling,	 mathematical	
analysis,	 specification,	 simulation,	 visualization,	 and	 realization.	 Petri	 nets	 have	 been	
used	 in	 a	 wide	 range	 of	 application	 areas,	 e.g.,	 performance	 evaluation,	 distributed	
database	 systems,	 flexible	 manufacturing	 systems,	 logic	 controller	 design,	
multiprocessor	memory	systems,	and	asynchronous	circuits.		
	
Petri	 nets	 have	 during	 the	 years	 been	 developed	 and	 extended	 and	 several	 special	
classes	 of	 Petri	 nets	 have	 been	 defined.	 These	 include,	 e.g.:	 generalized	 Petri	 nets,	
synchronized	Petri	 nets,	 timed	Petri	 nets,	 interpreted	Petri	 nets,	 stochastic	 Petri	 nets,	
continuous	Petri	 nets,	 hybrid	 Petri	 nets,	 colored	Petri	 nets,	 object-oriented	Petri	 nets,	
and	multidimensional	Petri	nets.	
	



FRTN20	

A	Petri	net	(PN)	has	two	types	of	nodes:	places	and	transitions	see	Figure	6.	A	place	is	
represented	 as	 a	 circle	 and	 a	 transition	 is	 represented	 as	 a	 bar	 or	 a	 small	 rectangle.	
Places	 and	 transitions	are	 connected	by	arcs.	An	arc	 is	directed	and	 connects	 either	 a	
place	with	a	transition	or	a	transition	with	a	place,	i.e.,	a	PN	is	a	directed	bipartite	graph.	
A	transition	without	an	input	place	is	called	a	source	transition	and	a	transition	without	
an	output	place	is	called	a	sink	transition.	
	
	

	
	

Figure	6:	Petri	Net	
	
Systems	with	concurrency	can	be	modeled	with	Petri	nets	using	the	and-divergence	and	
the	and-convergence	structure,	see	Figure	7	(left).	Systems	with	conflicts	or	choices	can	
be	 modeled	 using	 the	 or-divergence	 and	 the	 or-convergence	 structure,	 see	 Figure	 7	
(right).	
	

	
Figure	7:	Concurrency	and	Conflict	

	
A	 transition	 is	 enabled	 if	 each	 of	 its	 input	 places	 contains	 at	 least	 one	 token.	 An	
autonomous	PN	 is	a	PN	where	 the	 firing	 instants	are	either	unknown	or	not	 indicated	
whereas	a	non-autonomous	PN	is	a	PN	where	the	firing	of	a	transition	is	conditioned	by	
external	events	and/or	time.	



FRTN20	

	
An	enabled	transition	in	an	autonomous	PN	may	or	may	not	fire.	An	enabled	transition	
in	 a	non-autonomous	PN	 is	 said	 to	be	 fireable	when	 the	 transition	 condition	becomes	
true.	 A	 fireable	 transition	must	 fire	 immediately.	 The	 firing	 of	 a	 transition	 consists	 of	
removing	one	token	from	each	input	place	and	adding	one	token	to	each	output	place	of	
the	transition.	The	firing	of	a	transition	has	zero	duration.	
	
Petri	Nets	can	be	analyzed	with	respect	to	several	properties:	

• Live:	No	transitions	can	become	unfireable	
• Deadlock-free:	Transitions	can	always	be	fired	
• Bounded:	Finite	number	of	tokens	

	
The	analysis	methods	are:	

• Reachability	methods	–	exhaustive	enumeration	of	all	possible	markings	
• Linear	algebra	methods	–	describe	the	dynamic	behaviour	as	matrix	equations	
• Reduction	methods–	 transformation	 rules	 that	 reduce	 the	 net	 to	 a	 simpler	 net	

while	preserving	the	properties	of	interest	
	
Other	types	of	Petri	Nets	are	

• Generalized	Petri	Nets:	Weights	associated	to	the	arcs	
• Times	Petri	Nets:	Times	associated	with	transitions	or	places	
• High-Level	Petri	Nets:	Tokens	are	structured	data	types	(objects)	
• Continuous	 &	 Hybrid	 Petri	 Nets:	 The	 markings	 are	 real	 numbers	 instead	 of	

integers.	Mixed	continuous/discrete	systems	
	
Petri	 nets	 can	 conveniently	 be	 used	 to	 model	 systems	 with	 e.g.,	 concurrency,	
synchronization,	 parallelism	 and	 resource	 sharing.	 The	 graphical	 nature	 of	 Petri	 nets	
also	makes	them	suitable	to	use	for	visualization	and	simulation	of	systems.	In	addition	
to	this,	the	nets	can	be	theoretically	analyzed	with	different	analysis	methods.	
	

Grafcet	
Grafcet	was	proposed	in	France	in	1977	as	a	formal	specification	and	realization	method	
for	 logical	 controllers.	The	name	Grafcet	was	derived	 from	“graph”,	 since	 the	model	 is	
graphical	 in	 nature,	 and	 “AFCET”	 (Association	 Francaise	 pour	 la	 Cybernetique	
Economique	et	Technique),	the	scientific	association	that	supported	the	work.	
	
During	 several	 years,	 Grafcet	was	 tested	 in	 French	 industries.	 It	 soon	 proved	 to	 be	 a	
convenient	 tool	 for	 representing	 small	 and	medium	 scale	 sequential	 systems.	 Grafcet	
was	 therefore	 introduced	 in	 the	 French	 educational	 programs	 and	 proposed	 as	 a	
standard	 to	 the	 French	 association	 AFNOR	 where	 it	 was	 accepted	 in	 1982.	 In	 1988	
Grafcet,	 with	 minor	 changes,	 was	 also	 adopted	 by	 the	 International	 Electro-technical	
Commission	(IEC)	as	an	international	standard	named	IEC	848.	In	this	standard	Grafcet	
goes	 under	 the	name	 Sequential	 Function	Chart	 (SFC).	 Seven	 years	 later,	 in	 1995,	 the	
standard	 IEC	 1131-3,	 with	 SFC	 as	 an	 essential	 part,	 arrived.	 The	 standard	 concerns	
programming	languages	used	in	Programmable	Logic	Controllers	(PLC).	 It	defines	four	
different	programming	 language	paradigms	together	with	SFC.	No	matter	which	of	 the	
four	different	languages	that	is	used,	a	PLC	program	can	be	structured	with	SFC.	
	



FRTN20	

Because	of	the	two	international	standards,	Grafcet,	or	SFC,	is	today	widely	accepted	in	
industry,	where	it	is	used	as	a	representation	format	for	sequential	control	logic	at	the	
local	PLC	level.	
	
Grafcet	has	a	graphical	syntax.	It	is	built	up	by	steps,	drawn	as	squares,	and	transitions,	
represented	as	bars.	The	initial	step,	i.e.,	the	step	that	should	be	active	when	the	system	
is	 started,	 is	 represented	 as	 a	 double	 square.	 Grafcet	 has	 support	 for	 both	 alternative	
and	parallel	branches,	see	Figure	8.	
	

	
	

Figure	8:	Grafcet	graphical	syntax.	
	
A	step	can	be	active	or	inactive.	An	active	step	is	marked	with	one	(and	only	one)	token	
placed	in	the	step.	The	steps	that	are	active	define	the	situation	or	the	state	of	the	system.	
To	each	step	one	or	several	actions	can	be	associated.	The	actions	are	performed	when	
the	step	is	active.	
	
Transitions	are	used	to	connect	steps.	Each	transition	has	a	receptivity.	A	 transition	 is	
enabled	 if	 all	 steps	 preceding	 the	 transition	 are	 active.	 When	 the	 receptivity	 of	 an	
enabled	transition	becomes	true	the	transition	is	fireable.	A	fireable	transition	will	fire	
immediately.	When	a	transition	fires	the	steps	preceding	the	transition	are	deactivated	
and	 the	 steps	 succeeding	 the	 transition	 are	 activated,	 i.e.,	 the	 tokens	 in	 the	 preceding	
steps	are	deleted	and	new	tokens	are	added	to	the	succeeding	steps.	
	



FRTN20	

There	 are	 two	major	 categories	 of	 actions:	 level	 actions	 and	 impulse	 actions.	 A	 level	
action	is	modeled	by	a	binary	variable	and	has	a	finite	duration.	The	level	action	remains	
set	all	the	time	while	the	step,	to	which	the	action	is	associated,	is	active.	When	the	step	
is	deactivated,	the	action	is	reset.	A	level	action	may	be	conditional	or	unconditional.	An	
impulse	action	is	responsible	for	changing	the	value	of	a	variable.	The	variable	can,	but	
must	 not,	 be	 a	 binary	 variable.	 An	 impulse	 action	 is	 carried	 out	 as	 soon	 as	 the	 step	
changes	from	being	inactive	to	active.	A	variable	representing	time	may	be	introduced	to	
create	 time-delayed	 actions	 and	 time-limited	 actions.	 A	 level	 action	 can	 always	 be	
transformed	into	a	set	of	impulse	actions.		
	
In	Figure	9	(left)	two	steps,	x1	and	x2	are	shown.	A	level	action,	A,	is	associated	with	the	
upper	 step	 and	 an	 impulse	 action,	 B*,	 is	 associated	with	 the	 lower	 step.	 In	 the	 same	
Figure	(right)	an	example	is	given	describing	the	activation	and	deactivation	of	the	two	
steps	together	with	the	duration	of	the	two	actions.		
	

	
Figure	9:	Level	and	Impulse	actions.	

	
A	 situation	 can	be	 stable	or	unstable.	 If	 the	 transition	 following	 a	 step	 is	 immediately	
fireable	when	the	step	becomes	active,	 the	situation	 is	said	to	be	unstable.	An	 impulse	
action	is	carried	out	even	if	the	situation	is	unstable	whereas	a	level	action	is	performed	
only	 if	 the	situation	 is	stable.	Between	two	different	external	events	 it	 is	assumed	that	
there	 is	 always	 enough	 time	 to	 reach	 a	 stable	 situation,	 i.e.,	 two	 external	 events	 are	
assumed	never	to	occur	so	close	in	time	that	the	system	does	not	have	time	to	reach	a	
stable	situation.	
	
Each	transition	has	a	receptivity.	A	receptivity	may	either	be	a	logical	condition,	an	event,	
or	an	event	and	a	condition.	In	Figure	10	(left)	three	transitions	and	their	receptivities	
are	shown.	The	receptivity	of	 the	 first	 transition	 is	an	event,	↑x.	The	receptivity	of	 the	
second	 transition	 is	 a	 condition,	 y,	 and	 the	 receptivity	 of	 the	 last	 transition	 is	 a	
combination	of	a	condition	and	an	event,	x	∗↑z.	
	
In	 the	 same	 Figure	 (right)	 an	 example	 is	 given	 of	 the	 events	 and	 conditions	 and	 the	
corresponding	activation	and	deactivation	of	the	two	steps	x1	and	x2.	
	



FRTN20	

	
Figure	10:	Three	transitions	and	their	receptivities	

	
To	 facilitate	 the	description	of	 large	and	complex	 systems	macro	steps	 can	be	used.	A	
macro	 step	 is	 a	 step	 with	 an	 internal	 representation	 that	 facilitates	 the	 graphical	
representation	and	makes	it	possible	to	detail	certain	parts	separately.	A	macro	step	has	
one	input	and	one	output	step.	When	the	transition	preceding	the	macro	step	fires	the	
input	step	of	the	macro	step	is	activated.	The	transition	succeeding	the	macro	step	does	
not	become	enabled	until	 the	execution	of	 the	macro	step	reaches	 its	output	step.	The	
macro	step	concept	is	shown	in	Figure	11.	
	

	
	

Figure	11:	A	macro	step.	
	
The	dynamic	behavior	of	Grafcet	is	defined	by	five	rules:	

1. The	initial	situation	of	a	Grafcet	is	determined	by	its	initial	steps.		
2. A	transition	is	enabled	if	all	of	its	previous	steps	are	active.	A	enabled	transition	

is	fireable	if	its	associated	receptivity	is	true.	A	fireable	transition	is	immediately	
fired.	



FRTN20	

3. Firing	of	a	transition	results	in	deactivation	of	its	previous	step	and	a	
simultaneous	activation	of	its	following	steps.	

4. Simultaneously	fireable	transitions	are	simultaneously	fired.	
5. If	an	active	step	is	to	be	simultaneously	deactivated	and	activated	it	remains	

active.	
	
The	 aim	 of	 Grafcet,	 or	 SFC,	 in	 the	 standards	 has	 gradually	 shifted	 from	 being	 a	
representation	 format	 for	 logical	 controllers	 towards	 being	 a	 graphical	 programming	
language	 for	 sequential	 control	 problems	 at	 the	 local	 level.	 One	 main	 advantage	 of	
Grafcet,	or	SFC,	is	its	simple	and	intuitive	graphical	syntax.	Today	Grafcet	is	widely	used	
and	well	accepted	in	industry.	
	

JGrafchart	
JGrafchart	 is	 a	 Grafcet/SFC	 editor	 and	 execution	 environment	 developed	 at	 the	
Department	of	Automatic	Control,	Lund	University.	
	
JGrafchart	 provides	 graphical	 representation	 and	 execution	 of	 operation	 sequences,	
procedures,	and	state	machines.	It	integrates	features	from	Grafcet	in	IEC	61131-3,	and	
Statecharts	with	concepts	from	procedural	and	object-oriented	programming.	JGrafchart	
is	 implemented	 in	 Java/Swing	 and	 runs	 on	 all	 platforms	 that	 support	 Java.	 The	 tool	
combines	an	interactive	graphical	programming	environment	with	a	run-time	engine	for	
execution	of	JGrafchart	function	charts.	JGrafchart	can	be	used	for	all	types	of	discrete-
event	based	applications,	e.g.,	logical	control,	operating	procedure	management,	recipe-
based	batch	control,	and	workflow	modelling.	The	high	generality	of	JGrafchart	makes	it	
applicable	in	a	wide	variety	of	process	control	and	operator	support	situations.	
	
JGrafchart	supports	the	following	language	elements:		

• workspace	objects	
• Steps	
• initial	steps	
• transitions	
• parallel	splits	and	parallel	joins	
• macro	steps	
• exception	transitions	

In	addition	there	is	support	for:		
• digital	inputs	and	digital	outputs	
• analog	inputs	and	analog	outputs	
• socket	inputs	and	socket	outputs	
• internal	variables	(real,	boolean,	string,	and	integer)	
• action	buttons	and	free	text	for	comments.	

	
Sequence	 diagrams	 are	 created	 interactively	 using	 drag-and-drop	 from	 a	 palette	
containing	 the	 different	 language	 elements.	 The	 sequence	 diagrams	 are	 stored	 on	
JGrafchart	workspace	objects,	see	Figure	12.	
	



FRTN20	

	
	

Figure	12:	An	example	of	a	JGrafchart.	
	
JGrafchart	is	presented	in	Laboratory	Exercise	1.	
	

Summary	
In	today’s	lecture	the	focus	has	been	on	Discrete	Production	Processes,	see	Figure	13.	
	

	
	

Figure	13:	The	discrete	production	process.	



FRTN20	

	

References:	
• P.	Martin	and	G.Hale	[2010]:	Automation	made	easy.	Published	by	ISA.	ISBN	978-

1-936007-06-6		
• C.	Johnsson	[1999]:	A	graphical	language	for	batch	control,	Ph.D	thesis,	Dept.	of	

Automatic	control,	Lund	University,	Number	1051	
• R.	David	and	H.	Alla	and	[1992]:	Grafcet	&	Petri	nets:	Tools	for	Modelling	Discrete	

Event	Systems,	Prentice-Hall,	SBN:013327537X	
• KJ	Åström	and	R.	Murray	[2008]:	Feedback	Systems:	An	introduction	for	

Scientists	and	Engineers	,	Princeton	University	Press,	ISBN	978-0-691-13576-2	


