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Abstract: Utilities, such as steam and cooling water, are often shared between several
production areas at industrial sites, and the effects of disturbances in utilities could thus be
hard to predict. In addition, production areas could be connected because of the product flow
at the site. This paper introduces a simple representation of the correlation between utilities
and production. This representation can be used to formulate an optimization problem with
the objective to minimize the economical effects of disturbances in utilities, by controlling the
production of all areas at a site. The formulation of the problem is general, and thus the
optimization can be performed for any site with the given structure. The results are useful for
investigating the impact of plant-wide disturbances in utilities, and give suggestions on how to
control the production at utility disturbances. To enable on-line advise to operators on how to
control the production, the posed optimization problem is solved in receding horizon fashion.
This gives suggestions for how to control the production, given estimated utility disturbance
trajectories.
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1. INTRODUCTION

Complex chemical plants are often hard to model in detail
(Kano and Nakagawa (2008)), and for some applications,
a detailed model might not be needed. In this paper,
disturbances in utilities, that affect one or more production
areas at a site, are studied. The objective is to determine
how the production in all areas at a site should be
controlled, and buffer tanks should be used, to minimize
the economical effects of such disturbances. The key idea
is to model the network of areas at a site without including
the complex dynamics within each area.

The first problem is to represent how disturbances in
utilities affect production, and model how utilities are
shared between production areas. This does not concern
determining how utilities could be synthesized to satisfy
a certain demand (as studied by e.g. Iyer and Grossmann
(1998)), but rather to model how utilities affect the pro-
duction of different areas.

The second problem is to determine the supply of utilities
to different areas at a site, such that the loss of revenue
due to disturbances is minimized. This could be seen as to
determine how to transfer the variability of a process from
sensitive locations to locations where it does less damage,
as discussed in Qin (1998) and Luyben et al. (1999).
To formulate this optimization problem, the previously
discussed representation of how utilities affect production
is used. In this paper, a model predictive control (MPC)
formulation of the optimization problem is used, to enable
on-line advice to plant operators, given an estimated
disturbance trajectory. A cost function that aims to reduce
the revenue loss due to disturbances is designed, with

weights that could be chosen to find a good trade-off
between keeping the buffer tank levels at the site at
desirable levels, and maximizing profit. Aspects of how
to use MPC to optimize process economics are studied by
Rawlings and Amrit (2009).

2. ROLE-BASED EQUIPMENT HIERARCHY

According to the standard ISA-95.00.01 (2009), a site
consists of one or more production areas, where each
area produces either end products or intermediates. The
intermediate products may either be sold on the market
or refined to end products in other areas at the site. Buffer
tanks could be placed between areas to serve as inventory
of the intermediates or as buffer tanks with the purpose to
allow independent operation of upstream and downstream
areas. Thus, the production at a site may be viewed as a
network of areas, with intermediate buffer tanks between
some areas. An example is given in Fig. 1.

Fig. 1. An example of a site hierarchy.



In this paper, the dynamics of production areas are ig-
nored, i.e. it is assumed that the production of an area is
directly proportional to the inflow to the area, i.e.

qinj = qjyij (1)

where qinj is the inflow of product i to area j, qj the
production of area j, and yij is denoted the conversion
factor between product i and product j.

3. REPRESENTATION OF UTILITIES

Utilities are support processes that are utilized in produc-
tion, but that are not part of the final product. Common
utilities include steam, cooling water, electricity, com-
pressed air, and water treatment. Some of these utilities
operate continuously, such as steam, cooling water, feed
water and vacuum systems, whereas some utilities have
on/off characteristics. Example of such utilities could be
electricity and nitrogen.

The measurements related to utilities are often parameters
like temperature, flow or pressure of the utility. The
mapping from these measurements of utility properties to
the constraints it imposes on production is not trivial, and
might look different for different utilities. Thus, operation
outside its normal limits might give very different effects
on the production of the areas that require the utility.
Furthermore, a utility might be shared between several
production areas. If the effects of disturbances in utilities
at an entire site should be studied, this must also be
modeled in some way.

The suggestion in this paper is to interpret the utilities as
volumes, or power, which all areas that require the utilities
have to share. This interpretation makes sense for example
for cooling water and steam utilities, where all areas that
require these utilities have to split the total cooling or
heating power. The amount of a utility an area is assigned
is assumed to give a constraint on the production of the
area according to

qj ≤ cijuij +mij (2)

where qj ≥ 0 is the production of area j, uij ≥ 0
the assignment of utility i to area j and cij ≥ 0 and
mij ≥ 0 constants. If cij > 0, this model should correspond
quite well to many utilities with continuous characteristics.
For example, for cooling water: The cooling water utility
produces a certain cooling power, that is shared between
production areas that are connected to the cooling water
system. If an area is assigned more cooling water power,
it should be able to produce at a higher production
speed, within the normal range of production rates. The
constraint in (2) is presented graphically for m = 0 and
some cij > 0 in Fig. 2.

Fig. 2. Representation of a continuous utility.

If cij = 0, (2) corresponds to representation of a utility
with on/off characteristics, where the area can produce at
some maximum speed if the supply of utility is greater
than zero, and not at all when it does not get assigned
any amount of the utility. This is represented in Fig. 3.

Fig. 3. Representation of an on/off type of utility.

In reality, there could be a minimum amount of a utility
that is required for a production area to be able to op-
erate, here denoted umin

ij . Also, there could be an upper
limit, umax

ij , such that supplying more utility than umax
ij

does not permit higher production than the maximum
possible production if umax

ij is assigned to the area. This
modification to the constraint in (2) could be captured by
setting maximum and minimum constraints on the pro-
duction rates. If these constraints are taken into account,
the representation of the continuous type and on/off type
utilities become as in Fig. 4.

Fig. 4. Utility representations with production constraints.

As mentioned previously, utilities are often shared between
several production areas at a site. The volume interpre-
tation of utilities makes it possible to represent this by
constraints of the form

∑

j

uij ≤ Ui, i = 1, . . . , Nu (3)

where uij is the amount of utility i that is required by
area j at the site, Ui is the total amount of utility i, and
Nu the number of utilities used at the site. This is used to
formulate the optimization problem in Section 4.

4. FORMULATING THE OPTIMIZATION PROBLEM

The formulation of the optimization problem for mini-
mizing the economical effects of disturbances in utilities
consists of defining the model and the constraints, and
shaping the objective function. After having defined the
optimization problem, the problem is posed as an MPC
problem, to enable online use. The idea is to let the opera-
tors at the plant estimate the disturbance trajectory some
steps ahead, and use MPC to provide decision support for
how to handle the disturbance. Estimating the disturbance
trajectory is equivalent to estimating the total available
amount of all utilities, Ui(t), over the prediction horizon.



4.1 Model

The model of the site is given by the connections of its
production areas. An example of what the site structure
could look like is given in Fig. 1. The connections of areas
are represented by the mass balances at the internal buffer
tanks, i.e.

V (t+1) = qi(t)−qmi (t)−
∑

j

qj(t)yij , i = 1, . . . , Nb (4)

where Vi is the volume in the buffer tank for product i, qi
the production of product i, qmi the flow to the market of
product i, and yij the conversion factor between product i
and j (see eq. (1)). j denotes all areas downstream of area
i, and Nb is the number of internal buffer tanks.

4.2 Constraints

Constraints are imposed on buffer tanks and production
rates. Disturbances in the supply of utilities give time-
varying constraints on production rates.

Buffer Tanks The volume of the buffer tanks has to be
kept between some high and low limits, i.e.

V min
i ≤ Vi(t) ≤ V max

i , i = 1, . . . , Nb (5)

The maximum and minimum limits might correspond to
the entire buffer tank, or it could correspond to a part
of the tank that is reserved for handling disturbances in
utilities. Reference levels Vref for the buffer tanks are also
defined.

Production Rates Limited capacity of production areas
give upper constraints on the production rates. There
could also be a minimum rate at which an area could
operate. Shutdown and start-up of areas are often very
expensive and should be avoided. One way to model this
would be to use integer variables and punish shut-down
of areas in the objective function. Doing this would result
in a Mixed-Integer Linear Program (MILP), which could
be hard to solve because of the combinatorial nature of
such problems (Grossmann and Biegler (1995)), and the
computational cost may increase rapidly with the problem
size (Kondili et al. (1993)), i.e. in this case with the number
of areas at the site. A way to avoid the integer variables is
to impose a soft constraint on the production rates instead.
The way this is done is by introducing a slack variable, si,
such that

qmin
i + si ≤ qi(t) ≤ qmax

i (6)

−qmin
≤ si(t) ≤ 0 (7)

The slack variable is punished in the objective function to
avoid shutdown of areas, if it is not necessary.

Utilities At a disturbance in the supply of a utility, the
available amount of the utility might not be enough to
supply all areas with the amount they need for maximum
production. If utilities are modeled according to Section 3,

this constraint is represented by requiring (3) to hold for
all times t, e.g.

∑

j

uij(t) ≤ Ui(t), i = 1, . . . , Nu (8)

where uij is the amount of utility i that is assigned to area
j, Ui is the total amount of utility i, and Nu the number
of utilities used at the site. Since (2) holds for all areas j
and utilities i, this constraint is equivalent to time-varying
constraints of the production rates of all areas that share a
utility. It can be assumed that equality holds in (8), since it
would not be optimal for an area to not use all its assigned
utility volume to produce its product. Rewriting (8) using
(2) gives

∑

j

kijqj(t)− dij ≤ Ui(t), i = 1, . . . , Nu (9)

where kij = 1/cij and dij = mij/cij are positive constants
for utility i, area j.

4.3 Objective Function

The optimization is performed in two steps. First, the
steady-state production that gives the optimal profit, pref ,
is determined, assuming that there are no disturbances in
utilities, and no buffer tanks between areas. This profit
is used as a reference value for the final optimization
problem, where the objective is to minimize the economical
effects of disturbances in the supply of utilities. This
problem is formulated as an MPC problem, such that given
an estimated disturbance trajectory some steps ahead, the
operators at a site can obtain advice on how to control the
production.

Steady-state Optimization If there are no disturbances,
and no buffer tanks between areas, the optimal profit in
each time step can be determined by the linear program

pref = max
q,qm

Na
∑

i=1

piq
m
i (10)

subject to (4)− (9)

where pi is the contribution margin of product i, qmi the
flow to the market of product i, and Na the number of
areas at the site. The flows that give the optimal profit
are denoted q0, qm0.

Dynamic Optimization The objective function that is
suggested is J =

∑

t Jt, where

Jt = (pT qm(t)− pref )
2Qp +∆V T (t)Q∆V (t)+

+∆qT (t)R∆q(t) − gT s(t) + sT (t)Qss(t) (11)

and

∆V = V − Vref

∆q = q − q0



Qp > 0 is a scalar weight, gT a positive weighting vector,
and Q, R, and Qs are positive definite weighting matrices.
The optimization problem becomes

min
q(t),qm(t),s(t)

J (12)

subject to (4)− (9)

The objective function J consists of four parts:

(1) (pT qm(t)− pref )
2Qp

To minimize the deviation from the reference profit,
i.e. maximize the profit.

(2) ∆V T (t)Q∆V (t)

To minimize deviations from reference buffer tank
levels, and avoid solutions where all inventories are
sold to maximize profit.

(3) ∆qT (t)R∆q(t)

To minimize deviations from nominal production.

(4) −gT s(t) + sTQss(t)

To inflict extra cost to area shutdown.

To enable online use of the method, the suggestion is to
pose the optimization problem as an MPC problem, where
the utility trajectories, Ui, are estimated N steps ahead.
The MPC problem can be formulated as

min

N−1
∑

τ=0

Jt (13)

subject to (4)− (9)

where N is the prediction horizon.

The posed optimization problem has a structure that
makes it possible to solve it in a distributed fashion.
Therefore, the solution method presented in Giselsson and
Rantzer (2010) is used to solve the problem.

5. AN EXAMPLE

In this section, an example of how to formulate a specific
optimization problem for minimizing the economical loss
due to disturbances in utilities is given. The formulation is
possible due to the choice of the representation of utilities
presented in Section 3. The site that is considered is the
site with six production areas given in Fig. 1. Table 1
summarizes the maximum and minimum production rates
of all areas, qmax and qmin, the contribution margins of
all products, p, the maximum and minimum volume of all
buffer tanks, V max and Vmin, and the reference volumes
for the buffer tanks, V ref .

Three utilities are considered at the example site; high
pressure (HP) steam, middle pressure (MP) steam, and
cooling water. The utilities that are required at each area
are given in Table 2. It is assumed that, at maximum
production, the utilities are shared equally between the
areas that require them.

Table 1. Production data.

qmin qmax p V min V max V ref

Product 1 0.10 1 0.4 0 0.5 0.5

Product 2 0.05 0.5 0.7 0 0.5 0.5

Product 3 0.02 0.2 0.1 0 0.5 0.5

Product 4 0.01 0.1 0.5 - - -

Product 5 0.02 0.2 0.8 - - -

Product 6 0.02 0.2 1.0 - - -

Table 2. Utilities required at each area.

Area → 1 2 3 4 5 6

Steam HP x x

Steam MP x x x

Cooling water x x x x x x

5.1 Model

The mass balances at all buffer tanks at the site give

V1(t+ 1) = q1(t)− qm1 (t)− q2(t)− q3(t)− q4(t) (14)

V2(t+ 1) = q2(t)− qm2 (t)− q5(t) (15)

V3(t+ 1) = q3(t)− qm3 (t)− q6(t) (16)

with the same notation as in Section 4. As can be seen
in the equations, all conversion factors are assumed to be
equal to one in the example, for simplicity.

5.2 Constraints

Buffer Tanks Upper and lower level constraints for
buffer tanks are given by (5) for the three buffer tanks,
i = 1, . . . , 3. The limits V max and V min are given in
Table 1 for all buffer tanks.

Production Rates Minimum and maximum limitations
on production rates give constraints according to (6) and
(7), where also slack variables are introduced to be able to
punish shutdown of areas in the cost function. The limits
qmax and qmin are given in Table 1 for all areas.

Utilities It is assumed that the total amount of each
utility is equal to one, i.e. U1 = U2 = U3 = 1. This could
correspond to 100 % available utility. The utilities in the
example are of continuous type (see Section 3), and it
is assumed that zero assignment of a utility to an area
gives zero production in the area, i.e. cij , kij > 0 and
mij = dij = 0 for all areas j and utilities i. The time-
varying constraints on the production rates due to shared
utilities are obtained from (9) using Table 2. We get

k11q1 + k13q3 ≤ 1 (17)

k22q2 + k24q4 + k26q6 ≤ 1 (18)
6

∑

i=1

k3iqi ≤ 1 (19)



If the utilities are shared equally at maximum production,
we get

k11 =
1

2qmax
1

, k13 =
1

2qmax
3

(20)

k22 =
1

3qmax
2

, k24 =
1

3qmax
4

, k26 =
1

3qmax
6

(21)

k3i =
1

6qmax
i

, i = 1, . . . , 6 (22)

5.3 Objective Function

Since the flows to the market in the end product areas
are the same as the production in these areas, the flows
to the market from end product areas are omitted in the
optimization. Merging the production of all areas, and
the flows to the market of intermediate products to one
decision variable array, we get

q̄ = [ q1 q2 q3 q4 q5 q6 qm1 qm2 qm3 ]
T

(23)

Steady-state Optimization The steady-state solution
that maximizes (10) becomes

q̄ref = [ 1 0.5 0.2 0.1 0.2 0.2 0.2 0.3 0 ]
T

(24)

with the optimal profit pref = 0.7.

Dynamic Optimization The MPC problem formulation
for dynamic optimization could be posed as (13), with

pT = [ p1 p2 p3 p4 p5 p6 ] (25)

qm = [ pm1 pm2 pm3 pm4 pm5 pm6 ]
T

(26)

∆V =
[

V1 − V ref
1 V2 − V ref

2 V3 − V ref
3

]T
(27)

∆q = q̄ − q̄ref (28)

s = [ s1 s2 s3 s4 s5 s6 ]
T

(29)

and the constraints (14)-(22). s1 to s7 are slack variables
to prevent unnecessary shutdown of area 1 to 7.

The weights for the optimization are in the example chosen
asQp = 100,Q = I3,R = [ 0.1 0.1 0.1 10 10 10 10 10 10 ],
Qs = I7, g = 100qmax. The prediction horizon was chosen
as N = 10.

5.4 Results

Estimating the disturbance trajectory ten steps ahead
and using the MPC formulation gives the trajectories
that suggest how the production should be controlled
to minimize the economical effects of the disturbance.
The solution trajectories of the example problem for a
disturbance in middle pressure steam is given in Fig. 5,
and the results for a disturbance in the cooling water
utility is given in Fig. 6. In this example, it is assumed
that the actual disturbance trajectory is identical to the
estimated trajectory. To give a clearer view of how the
disturbance is handled, the production and the sales at
the time of the disturbance are shown in Fig. 7 for the

MP steam disturbance, and in Fig. 8 for the cooling water
disturbance.
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Fig. 5. Optimal trajectories for MP steam disturbance.
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Fig. 6. Optimal trajectories for cooling water disturbance.
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Fig. 7. Optimal production and sales trajectories at MP
steam disturbance compared to optimal steady state
solution.
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Fig. 8. Optimal production and sales trajectories at cooling
water disturbance compared to optimal steady state
solution.

6. CONCLUSIONS

The representation of utilities that is introduced is a
simple way to model both continuous and on/off utilities.
The representation allows formulation of an optimization
problem that aims to find production trajectories that
minimize the revenue loss due to disturbances in utilities,
when utilities are shared between one or more production
areas. The MPC formulation of the optimization problem
allows optimization of an estimated disturbance trajectory
that may be updated in each time step. The optimization
results can be used to analyze the effects of different plant-
wide disturbances in utilities. The optimization could also
be used for obtaining advice on how to handle different
types of disturbances in utilities, given certain constraints
on the production and the buffer tanks at the site. In ad-
dition, the trade-off between keeping buffer tank levels at
reference levels and maximizing the profit can be studied

by manipulating the weights of the cost function for the
optimization problem. Something that is not considered
in the optimization problem formulation is market con-
straints. A possible future work direction is to include the
supply chain, e.g. market demand and transports, in the
problem formulation.
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