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Lecture 8 and 9

Lecture 8

@ Linear Programming (LP)

@ LP in production planning example
@ Model Predictive Control

@ A portfolio optimization problem

Lecture 9

@ Introduction to convex optimization
@ Portfolio optimization revisited
@ Duality and distributed optimization
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Mini Problem

Minimize  —x; — xo
subjectto x; +2x9 <1
2x1+x9 <1
X1 Z 0
X9 Z 0
Equivalent matrix formulation:
Minimize (-1 —1)x
. 1 2 1
subject to (2 1) x < <1> x>0

where x = (x1 x9)7
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Mini Problem graphical solution
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Linear Programming

General formulation:

Minimize ¢Tx

subjectto Ax <b
Hx=g
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Today’s lecture

@ Linear Programming (LP)

@ LP in production planning example

e Static systems
@ Dynamical systems

@ Model Predictive Control

@ A Portfolio Optimization Problem
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Production planning example

Two products are produced:

@ Garden furniture
@ Sleds

Two main parts of production

@ Sawing
@ Assembling
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Production planning example cont'd

Weekly production:
x1 : Garden furniture
x9 : Sleds

Product prices:
p1 : Garden furniture
p2 . Sleds

The objective is to maximize weekly profit:
max pixi + pa2xo

Subiject to:

Sawing constraints: 7x; + 10x < 100
Assembling constraints: 16x; + 12x9 < 135
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Production planning example cont'd

Sawing and assembling constraints:
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Production planning example cont'd

Level curves for optimal points obtained with different prices:
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Production planning example cont'd

Seasonal variations in expected prices:

Price

25

201

151

Yearly price variations
T

T T T T T
Garden furniture: Py
Sleds: P,

summer |
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Production planning example cont'd

Optimal production for different seasons:

Product planning
T T

T T T T
Garden furniture: x,
Sleds: x,

autumn

15

winter spring summer winter

i
o

# manufactured products
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Today’s lecture

@ Linear Programming (LP)

@ LP in production planning example

@ Static systems
@ Dynamical systems

@ Model Predictive Control

@ A portfolio optimization problem
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Dynamic Production planning example

Hire extra personel to increase production:

Nominal learning (sawing):

x3(t + 1) = 0.7x3(¢) + 30us(?)
Nominal learning (assembling):

x4(t + 1) = 0.7x4(2) + 40.5u4(t)

where ugz € [0,1], u4 € [0, 1] is fraction of full time employment

x3(t) and x4(t) quantifies increased capacity:

Sawing: 7x; + 10x9 < 100 + x3(¢)
Assembling: 16x; + 12x9 < 135 + x4(2)
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Mini problem

Assume that extra sawing personel is working full-time, i.e
us(t)=1,t=0,1,...

If the initial sawing capacity of the extra labor is 0, i.e x3(0) = 0,
what is the sawing capacity after three weeks, i.e. x3(3)?

What is the stationary sawing capacity of the extra labor?
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Mini problem - solution

Sawing capacity at time ¢ = 3:

x3(3) = 0.7x3(2) + 30u3(2) = 0.7(0.7x3(1) + 30us3(1)) + 30u3(2)
= 0.7(0.7(0.7x3(0) + 30u3(0)) + 30u3(1)) + 30us(2)
= (0.7 + 0.7 4+ 1)30 = 65.7
Stationary capacity is given by:
x3 = 0.7x3 + 30
which gives
30 30

~1-07 03
The total sawing capacity is doubled after learning period

100

X3
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Dynamic Production planning example cont'd

The weekly cost for extra personnel is ps and p4 respectively
This gives the following production planning problem that
optimizes one year ahead production:

max p1(8)x1(2) + p2(t)x2(t) — p3(t)us(t) — pa(t)ua(?)

subjectto  x3(¢ + 1) = 0.7x3(¢) + 30us(?)
x4(t + 1) = 0.7x4(t) + 40.5u4(t)

Tx1(t) + 10x2(£) < 100 + x3(t)

16x1(t) + 12x2(t) <135+ x4(t)

0§u3(t)§1 0§u4(t)§1

x3(0) = x3 x4(0) = «9
for¢ =0,...,52 and x3 and x are the initial capacities for the
extra personel
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Dynamic Production planning example cont’d

Optimal production over 52 weeks with extra personel and
product prices as before and ps = ps = 100:

Product planning
T T

T
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Sleds: x,
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Dynamic Production planning example cont’d

Optimal extra labor:

Extra labor
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Dynamic Production planning example - limitations

The following is not compensated for:

@ Prices may not be equal to predicted prices
@ Extra personel might be fast or slow learners
@ Decreased capacity due to employee illness
9 ...

Anders Rantzer Market-Driven Systems Lecture 8



Today’s lecture

@ Linear Programming (LP)
@ LP in production planning example
@ Model Predictive Control

@ A portfolio optimization problem
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Model Predicitive Control (Receding Horizon Control)

u A

~

At time ¢:
@ Measure the state x(t)
@ Use model to optimize input trajectory fort +1,...,t + N
© Apply the optimization result u(¢) to the system
© After one sample, go to 1 to repeat the procedure

Anders Rantzer Market-Driven Systems Lecture 8



The History of MPC

@ A.L Propoi, Use of Linear Programming methods for
synthesizing sampled-data automatic systems, 1963
Automation and Remote Control

@ Used industrially since 1970s, see for example
J. Richalet, Model predictive heuristic control —
application to industrial processes, Automatica, 1978.
@ Many industrial products: DMC (Aspen Tech), IDCOM
(Adersa), RMPCT (Honeywell), SMCA (Setpoint Inc),
SMOC (Shell Global), 3dMPC (ABB), ...

@ Strong theory development since about 1980 (linear) and
1990 (nonlinear)
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MPC Example

Product planning example with model-reality mis-match:

Modeled employee learning:

X3 (t + 1) = 0.7:)C3(t) e 30u3(t)
X4(t + 1) = 0.7.’)C4(t) + 40.5u4(t)

Actual employee learning:

x3(t + 1) = 0.75x3 (t) ar SOU3(t) aly U3(t)
.’)C4(t + 1) = 0.65X4(t) + 40.5U4(t) 2 U4(t)

where vs(¢) and v4(t) are uniformly distributed random numbers
in [—0.3x3(¢) 0] and [—0.3x4(t) 0] respectively

The product prices p1(¢) and pq(t) are additively affected by
uniformly distributed random noise in [—1 1]
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MPC Example - Results

Weekly production when extra labor decided using MPC:

18- winter spring

# manufactured products
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MPC Example - Results

Extra personel (decided using MPC):

Extra labor
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MPC Example - Comparison

Production with extra labor as in dynamic production planning
example (i.e. no feedback):

Product planning
T T

18 - winter spring summer

# manufactured products

Profit over one year is 8.6% higher with MPC-feedback
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MPC — Pros and Cons

Pros:

@ Good constraint handling

@ Easily understandable tuning knobs (e.g. cost function)
@ Usually gives good performance in practice

@ Handles complex systems well

Cons:

@ Calculation times
@ System model needed

@ Historically lack of theoretical understanding of the closed
loop system
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Today’s lecture

@ Linear Programming (LP)
@ LP in production planning example
@ Model Predictive Control

@ A portfolio optimization problem
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A Dynamic Portfolio of Assets

A portfolio of assets is modelled as

(x¢41)1 (rev1)1 (2)1 + (ue)1

oy e NN e

or with vector notation x;,1 = Ryy1(x: + us). Here

()i is the is the value of asset i at time ¢
(r++1):  is the vector of asset returns, from period ¢ to period ¢ + 1
(we)i is the is the value of trades in asset i at time ¢

Assume that r; for t = 1,2, ... are independent random (vector)
variables with known mean Er; = 7; and covariance
E(rt—Ft)(rt—f"t)T = Zt.

Notation: R; = ER, = diag(#;).
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Expressions of interest

1 a column vector where every entry equals one.
17 «, the total value of the portfolio before trading at time ¢
17y, the total cash put into the portfolio at time ¢,

excluding transaction costs

O, ut) the total cost at time ¢, including transaction costs
discount factors, etc.

—L4(x,uy)  the total revenue at time ¢

u: = ¢:(x;) The trading policy ¢, determines the trades u;
from the portfolio positions x;

Anders Rantzer Market-Driven Systems Lecture 8



A Portfolio Optimization Problem

Find a trading policy u; = ¢;(x;) that solves the following
optimization problem:

Minimize E Y7, (x, us)

X1 = Rop1 (s + uy)

fort=0,1,..., T —1
ut=¢t(xt)

subject to {
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A Portfolio Optimization Problem

In other words, we seek the trading policy ¢, that maximizes the
total expected revenue.

Maximize —E "L £(x;,us)

X1 = Rop1 (s + uy)

fort=0,1,..., T —1
ut=¢t(xt)

subject to {
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Mini-problem

What would Model Predictive Control mean for the portfolio
optimization problem?
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Portfolio Optimization by Model Predictive Control

Minimize ST, £(2;,v;)
subjectto  z;.1 = Riy1(2r +v7), t=t,...,T—1
2t = Xt.

The optimal sequence vy, ...,v}_, is a plan for future trades
over the remaining trading horizon, under the (highly
unrealistic) assumption that future returns will be equal to their
mean values. Only v; is used for trading. At time ¢ + 1, a new
problem is solved.
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Lecture 8 and 9

@ Linear Programming (LP)

@ LP in production planning example
@ Model Predictive Control

@ A portfolio optimization problem

(~]

Introduction to convex optimization

©

Portfolio optimization revisited
Duality and distributed optimization

(]
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