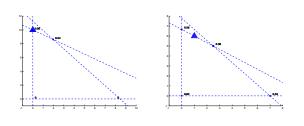


The Stage Cost	Risk Mitigation
$\ell(x_t, u_t) = \begin{cases} 1^T u_t + \psi(x_t, u_t) & \text{if } x_t + u_t \in \mathcal{C}_t \\ \infty & \text{otherwise} \end{cases}$ In words: Minimize investments $1^T u_t$ plus transaction costs $\psi(x_t, u_t)$, while keeping the portfolio within constraints $x_t + u_t \in \mathcal{C}_t$.	 Recall that we keep the portfolio within constraints x_t + u_t ∈ C_t The constraint set C_t can be chosen to mitigate risk: The quadratic constraint (x_t + u_t)^TΣ_{t+1}(x_t + u_t) < γ_t keeps the variance of the portfolio value below γ_t. Negative lower bounds -γ_t ≤ x_t limit the room for risky short positions
ortfolio Optimization by Model Predictive Control	Lecture 7
$ \begin{array}{ll} \text{Minimize} & \sum_{\tau=t}^{T} \ell(z_{\tau}, v_{\tau}) \\ \text{subject to} & z_{\tau+1} = \bar{R}_{\tau+1}(z_{\tau} + v_{\tau}), \tau = t, \ldots, T-1 \\ & z_t = x_t. \end{array} $ The optimal sequence v_t^*, \ldots, v_{T-1}^* is a plan for future trades over the remaining trading horizon, under the (highly unrealistic) assumption that future returns will be equal to their mean values. Only v_t^* is used for trading. At time $t + 1$, a new problem is solved.	 Introduction to convex optimization Portfolio optimization revisited Duality and distributed optimization
Distributed Optimization	Linear Programming Example
 Large scale problems cannot be solved centralized. Computational complexity Memory constraints Communication constraints Use market mechanisms for distributed optimization! 	$\begin{array}{cccc} \begin{array}{c} \mbox{Product} & \mbox{ \# of items} & \mbox{Profit / item} \\ Garden Furniture 1 & x_1 & c_1 \\ Garden Furniture 2 & x_2 & c_2 \\ Sled 1 & x_3 & c_3 \\ Sled 2 & x_4 & c_4 \end{array}$ Constraints for sub-division 1: $\begin{array}{c} 7x_1 + 10x_2 \leq 100 & (Sawing) \\ 16x_1 + 12x_2 \leq 135 & (Assembling) \end{array}$ Constraints for sub-division 2: $\begin{array}{c} 10x_3 + 9x_4 \leq 70 & (Sawing) \\ 6x_3 + 9x_4 \leq 60 & (Assembling) \end{array}$ Painting Constraint: $\begin{array}{c} 5x_1 + 3x_2 + 3x_3 + 2x_4 \leq 45 \end{array}$
Linear Programming Example	Numerical Results
$\begin{array}{lll} \mbox{Mathematical formulation:} \\ \mbox{Maximize} & c_1x_1+c_2x_2+c_3x_3+c_4x_4 \\ \mbox{subject to} & 7x_1+10x_2 \leq 100 \\ & 16x_1+12x_2 \leq 135 \\ & 10x_3+9x_4 \leq 70 \\ & 6x_3+9x_4 \leq 60 \\ & 5x_1+3x_2+3x_3+2x_4 \leq 45 \\ & x \geq 0 \end{array}$	Optimal solution for Division 1 (left) and Division 2 (right). Common constraint active (i.e. equality holds).

Dual Variables	Numerical Results
Dual variables are the marginal prices for resources: If the capacity for a resource is increased by 1, the total profit is increased by the corresponding dual variable. This gives insight to which resource to increase to gain most	Optimal dual variables and their respective constraints: Constraint Dual variable $7x_1 + 10x_2 \le 100$ 1.04 $16x_1 + 12x_2 \le 135$ 0 $10x_3 + 9x_4 \le 70$ 0 $6x_3 + 9x_4 \le 60$ 0.4 $5x_1 + 3x_2 + 3x_3 + 2x_4 \le 45$ 3.2 Optimal value: $p^* = c^T x^* = 272$ If common (painting) constraint capacity increased to 46, optimal value becomes $272 + 3.2 = 275.2$ Company would gain most by increasing painting capacity
Linear Programming Duality	Optimality Conditions
$\begin{array}{lll} \max_{x} & c^{T}x & = & \min_{\lambda} & b^{T}\lambda \\ \text{with} & Ax \leq b & \text{with} & A^{T}\lambda \geq c \\ & x \geq 0 & \lambda \geq 0 \end{array}$	x^* is primal optimal if and only if there exists λ^* such that $Ax^* \leq b$ $A^T \lambda^* \geq c$ $\lambda^* \geq 0$ $x^* \geq 0$ $(A_ix^* - b_i)\lambda_i^* = 0$ $(A_j^T \lambda^* - c_j)x_j^* = 0$ These conditions are called the KKT-conditions for this LP-problem
Distribution of LP Example	Distribution of LP Example cont'd
Solve the LP example Maximize $c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$ subject to $7x_1 + 10x_2 \le 100$ $16x_1 + 12x_2 \le 135$ $10x_3 + 9x_4 \le 70$ $6x_3 + 9x_4 \le 60$ $5x_1 + 3x_2 + 3x_3 + 2x_4 \le 45$ $x \ge 0$ in a distributed fashion using the dual problem	$\begin{array}{l lllllllllllllllllllllllllllllllllll$
Distributed Optimization Algorithm	Comments on Distributed Optimization
 Initialize algorithm by λ⁽⁰⁾ = 0 and x⁽⁰⁾ = 0. For fixed λ = λ^(k) let the sub-divisions solve their respective optimization problems to find the state vector x^(k). Define λ^(k+1) = max(0, λ^(k) - α^(k)(45-5x₁^(k)+3x₂^(k)+3x₃^(k)+2x₄^(k))) Set k ← k + 1 and go to step 2. Convergence to optimal value and convergence in dual variables guaranteed with this algorithm, if the step size λ^k is appropriately chosen Convergence in primal variables guaranteed if objective strictly concave 	 Decomposition scheme is called dual decomposition Dual decomposition most useful for large problems with few constraints involving all variables many local constraints Applicable to other types of optimization problems as well (such as quadratic problems)

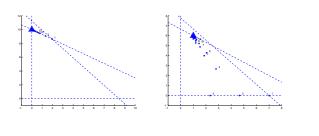
Numerical Results

Primal variable iterates (x) for division 1 (left) and division 2 (right) with their respective local constraints. Triangles show optimal solution (which is not in a corner in division 2 due to the constraint with all variables). The numbers show the fraction of iterates in that corner.



Numerical Results

Same as previous slide where a certain convex combination of the solutions is plotted. These converge to the primal optimal solution. The numbers correspond to iterate number.



Lecture 6 and 7

Lecture 6

- ► Linear Programming (LP)
- LP in production planning example
- Model Predictive Control
- A portfolio optimization problem

Lecture 7

- Introduction to convex optimization
- Portfolio optimization revisited
- Duality and distributed optimization