Market Driven Systems (FRTN20)

Exercise 8 - Solutions

Game Theory
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Let x be the number of cars going from start to A and y the number of cars going
directly from A to end. Consequently, x — y cars use the new road. Total travel time is

2 (4000 — y)?
= = 4454000 —x) + 45y + —— /|
J(x,y) 100+ 5(4000 — x) + 45y + 100

Minimizing with respect to x and y gives x* = 2250 and y* = 1750. The new travel
time per car is hence
1
——J(x*,y") = 64.7
i.e. a gain by 18 s, compared with the situation before the new road and by 15.3 min-
utes compared to the situation with the road, but without centralized planning.

Comment: Improving a road, or building a new road, can never increase total travel
time if centralized planning is used. With decentralized planning it surpisingly can.

If we use the fact that
Ay > n&inAxy, Vx,y

and maximize both sides with respect to y we get

m;lexy > m}eylxn&mAxy, Vx.

Since this holds for all x, it also holds for the x minimizing the left hand side, so

minmaxA,, > maxminA,,.
X y = y x e

Let p := P(X = black). The game from Y’s perspective, knowing X s strategy becomes
Y
red black
| 9(1-p)+5p = 14p-9 | 5(1-p)-p = -6p+5
This means that ¥ can choose between the two lines in the figure, and will choose the
upper one. The optimal choice for the minimizer X is hence to use the value p* = 0.7,

since this minimizes the value of the upper line. This will give an outcome of 0.8, and
the game hence favors the column player “1”.

Since we know minmax = max min the outcome will be the same analysed from X
perspective, knowing Y strategy. But to verify this let ¢ = P(Y = black). This reduces
the game to

% red | -9(1-q)+5q = 14g-9
black 5(1-q)-q = -6g+5
with optimal solution at 14¢g* —9 = —64" +5 = ¢* = 0.7, also giving outcome 0.8.




The maximization over y is equivalent to selecting the maximal element in the vector
xTA. The second row x’A < o1 upper bounds this maximal element by . The
bound o is minimized over x (first row). The last two lines constrain x to be a valid
probability vector (positive elements, which sum up to 1).

Denote the strategies r := p;(Bach) and g = p,(Bach).

For p,(Bach) < 1/3, player 1 prefers Stravinsky: r = 0.

For p,(Bach) = 1/3, player 1 is indifferent: r = [0, 1].

For p,(Bach) > 1/3, player 1 prefers Bach: r =1

The best response functions r* = B|(q) and ¢* = B;(r) are shown in the figure. The
intersection(s) are the Nash equilibrium.

r = pi(Bach)
1
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. Bach and Stravinsky (cf. lecture notes).

Player 2
Bach Stravinsky
Player 1 Bach 2,1 0,0
Stravinsky 0,0 1,2
. Rock-paper-scissor (cf. the lecture notes).
Player 2
rock paper  scissor

rock 0 1 -1

Player 1  paper -1 0 1
scissor 1 -1 0

. Consider the game below.

Player 2

1 r

Player 1 u |00 |3-1
d | 00 1,1

Assume first that 1 starts. Choosing u will result in (0, 0), while choosing d will result
in (1,1) (given that 2 is rational). Hence, if 1 starts, the outcome will be (1,1). If,
instead, 2 starts, the optimal strategies will be (/,u) or (/,d), both resulting in the
outcome (0,0).

Consequently, both 1 and 2 benefit from 1 being the leader.



Denote by p = P(worker shirking) and ¢ = P(boss inspecting). For the worker, the
game then reduces to

work | -w
shirk | -fq

worker

Similarly, for the boss the game reduces to
boss
not inspect inspect

| g(p) | g(-p)+hp-i |

The corresponding best response curves are shown in the figure below.
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The Nash equilibrium occurs in the intersection
i w
' f
For the game instance w =1, f = 5,i = 3, g = 1 this corresponds to the worker working

3/5 of the time and the boss inspecting 1/5 of the time. The expected outcomes are
then

(rq") = (5, 2)-

Uworker = —w = —1
. 2
Uboss:g(l_p ): g

. The expected outcome for the boss is now always decreased by inspecting, in fact

Uboss(P,q) = g(1 = p)(1 —q) + (g —i)(1 = p)g—ipqg = —iqg—gp+g

which is maximized by ¢* = 0. The situation for the worker is unchanged, and from
the best response curve we see that his best response will be p* = 1, i.e. shirking.



b. The boss declares his strategy, defined by ¢, whereupon the worker chooses p. The
Stackelberg strategy of the boss is then

61* = arg In;lX Uboss (q,Bworker(Q)) = arg ml?x(g - gBWorker(Q) - iQ)-

From the figure we can see that the best response from the worker is

1 ,q<%
p*:Bworker(Q) = [0,1] 7‘]:?
0 ,q>%

The best response function for ¢ = w/ f is the entire interval, which complicates things
somewhat. However by using any ¢ > w/ f one will achieve the response p* = 0. This
means that the any inspection rate above w/f will induce work being the optimal
response.

The outcome for the boss will then be g — ig which can be made arbitrarly close to
g—iqg-=g—iw/f>0

Due to the fact that the boss needs to declare his inspection rate in advance, an equilib-
rium has arisen in (work, inspect w/ f). Note that this situation is more advantageous
for the boss than the outcome 0.

a. The probability density function of each random variable X; € X = {X),...,X,} is
fx,(x) = 1 and their distribution functions are given by

X
Fi(x) = Prob(X; < x) = / FelO)di = x.
0
Let Y be the k™ largest element in X. Le., Y] is the largest, and so on. The distribution

function for Y] is easily calculated using the observeration that ¥; < x means that all
n variables are below x. The probability for this is

&@Zﬁ&@zﬁ

_ dFy

and the density function for the ¥; can then be calculated from fy, = 1 = nx" L,

The distribution function for Y} is
Fy, (x) = Prob(¥; < x) = P(at most k-1 values are above x)

Splitting the event “at most k values above x” into the disjoint events “at most k-1
values above x 7 and “exactly k values above x” we see that

Fy,,, (x) = Fy, (x) + <Z>x"k(1 __—

This recursion gives all distribution functions and density functions, for example

_dFyz_i n 11 _ _ 201 _
= _dx(x +nd" (1—x))=n(n—1)x""7(1 —x)

fyz
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b. We seek

1 1
my = E(Yk) :/0 xfyk(x)dx:/o xdiiFyk(x)dx

where the last equaility is a consequence of the fundamental theorem of calculus.
Combining this with the recursive expression for Y, yields

B n I d — P
mk+1—mk—|—<k>/0xa<x" (1—x)>dx

where (by partial integration)

1od o Kl (n—k)!
/Ox— <x k(l—x)")dx:—m.

Hence
n! k!(n—k)! 1
. = my — .
kl(n—k)! (n+1)! n+1

It is straight forward to compute

My 1 = My —

n

m —/1xix”dx—n/1x”dx——[x”+1]1— "
" Tax o S on+l 0

n+1

which yields the general result

To confirm that it is a Nash equilibrium, we assume everyone is bidding (n —1)/n
times their valuation and show that it is not beneficial for a single bidder to deviate
from this strategy.

The revenue of a bidder with valuation V and bid X is

U(X) = (V —X)-P(X > all other bids) = (V —X) - P <n_

" 1X > all other Valuations>

n

n—1
X> , ifX<(n—1)/n, else(V-X)

el

n—1

The function is maximized when

dU (X*) n—1
170.4 - n

which shows that the the claim in the problem text is true.

From the definition it is straight forward to find the probability of winning the auction
Pi(Vi) =Vl
A result from the lecture gives the expected payoff S; through

ds; v
L oyr=Si(V) = L.
av, ! (Vi) n



