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1. Let x be the number of cars going from start to A and y the number of cars going

directly from A to end. Consequently, x− y cars use the new road. Total travel time is

J(x,y) =
x2

100
+45(4000− x)+45y+

(4000− y)2

100
.

Minimizing with respect to x and y gives x∗ = 2250 and y∗ = 1750. The new travel

time per car is hence
1

4000
J(x∗,y∗)≈ 64.7,

i.e. a gain by 18 s, compared with the situation before the new road and by 15.3 min-

utes compared to the situation with the road, but without centralized planning.

Comment: Improving a road, or building a new road, can never increase total travel

time if centralized planning is used. With decentralized planning it surpisingly can.

2. If we use the fact that

Axy ≥ min
x

Axy, ∀x,y

and maximize both sides with respect to y we get

max
y

Axy ≥ max
y

min
x

Axy, ∀x.

Since this holds for all x, it also holds for the x minimizing the left hand side, so

min
x

max
y

Axy ≥ max
y

min
x

Axy.

3. Let p :=P(X = black). The game from Y ’s perspective, knowing X ’s strategy becomes

Y

red black

-9(1-p)+5p = 14p-9 5(1-p)-p = -6p+5

This means that Y can choose between the two lines in the figure, and will choose the

upper one. The optimal choice for the minimizer X is hence to use the value p∗ = 0.7,

since this minimizes the value of the upper line. This will give an outcome of 0.8, and

the game hence favors the column player “I”.

Since we know minmax = maxmin the outcome will be the same analysed from Xs

perspective, knowing Y strategy. But to verify this let q = P(Y = black). This reduces

the game to

X
red -9(1-q)+5q = 14q-9

black 5(1-q)-q = -6q+5

with optimal solution at 14q∗−9 =−6q∗+5 ⇒ q∗ = 0.7, also giving outcome 0.8.
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4. The maximization over y is equivalent to selecting the maximal element in the vector

xT A. The second row xT A ≤ α 11T upper bounds this maximal element by α . The

bound α is minimized over x (first row). The last two lines constrain x to be a valid

probability vector (positive elements, which sum up to 1).

5. Denote the strategies r := p1(Bach) and q = p2(Bach).

For p2(Bach)< 1/3, player 1 prefers Stravinsky: r = 0.

For p2(Bach) = 1/3, player 1 is indifferent: r = [0,1].
For p2(Bach)> 1/3, player 1 prefers Bach: r = 1

The best response functions r∗ = B1(q) and q∗ = B2(r) are shown in the figure. The

intersection(s) are the Nash equilibrium.

B1(q)

B2(r)

q = p2(Bach)

r = p1(Bach)

2/3

1/3

1

1

6.

a. Bach and Stravinsky (cf. lecture notes).

Player 1

Player 2

Bach Stravinsky

Bach 2,1 0,0

Stravinsky 0,0 1,2

b. Rock-paper-scissor (cf. the lecture notes).

Player 1

Player 2

rock paper scissor

rock 0 1 -1

paper -1 0 1

scissor 1 -1 0

c. Consider the game below.

Player 1

Player 2

l r

u 0,0 3,-1

d 0,0 1,1

Assume first that 1 starts. Choosing u will result in (0,0), while choosing d will result

in (1,1) (given that 2 is rational). Hence, if 1 starts, the outcome will be (1,1). If,

instead, 2 starts, the optimal strategies will be (l,u) or (l,d), both resulting in the

outcome (0,0).

Consequently, both 1 and 2 benefit from 1 being the leader.
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7. Denote by p = P(worker shirking) and q = P(boss inspecting). For the worker, the

game then reduces to

worker
work -w

shirk -fq

Similarly, for the boss the game reduces to

boss

not inspect inspect

g(1-p) g(1-p)+fp-i

The corresponding best response curves are shown in the figure below.

p

q

i
f

w
f

Bboss(p)

Bworker(q)

0
1

1

The Nash equilibrium occurs in the intersection

(p∗,q∗) = (
i

f
,
w

f
).

For the game instance w= 1, f = 5, i= 3,g= 1 this corresponds to the worker working

3/5 of the time and the boss inspecting 1/5 of the time. The expected outcomes are

then
Uworker =−w =−1

Uboss = g(1− p∗) =
2

5
.

8.

a. The expected outcome for the boss is now always decreased by inspecting, in fact

Uboss(p,q) = g(1− p)(1−q)+ (g− i)(1− p)q− ipq =−iq−gp+g

which is maximized by q∗ = 0. The situation for the worker is unchanged, and from

the best response curve we see that his best response will be p∗ = 1, i.e. shirking.
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b. The boss declares his strategy, defined by q, whereupon the worker chooses p. The

Stackelberg strategy of the boss is then

q∗ = arg max
q

Uboss(q,Bworker(q)) = arg max
q

(g−gBworker(q)− iq).

From the figure we can see that the best response from the worker is

p∗ = Bworker(q) =











1 , q < w
f

[0,1] , q = w
f

0 , q > w
f

The best response function for q=w/ f is the entire interval, which complicates things

somewhat. However by using any q > w/ f one will achieve the response p∗ = 0. This

means that the any inspection rate above w/ f will induce work being the optimal

response.

The outcome for the boss will then be g− iq which can be made arbitrarly close to

g− iq∗ = g− iw/ f > 0

Due to the fact that the boss needs to declare his inspection rate in advance, an equilib-

rium has arisen in (work, inspect w/ f ). Note that this situation is more advantageous

for the boss than the outcome 0.

9.

a. The probability density function of each random variable Xi ∈ X = {X1, . . . ,Xn} is

fXi
(x) = 1 and their distribution functions are given by

FXi
(x) = Prob(Xi ≤ x) =

∫ x

0
fXi
(t)dt = x.

Let Yk be the kth largest element in X . I.e., Y1 is the largest, and so on. The distribution

function for Y1 is easily calculated using the observeration that Y1 < x means that all

n variables are below x. The probability for this is

FY1
(x) =

n

∏
i=1

FXi
(x) = xn,

and the density function for the Y1 can then be calculated from fY1
=

dFY1

dx
= nxn−1.

The distribution function for Yk is

FYk
(x) = Prob(Yk ≤ x) = P(at most k-1 values are above x)

Splitting the event “at most k values above x” into the disjoint events “at most k-1

values above x ” and “exactly k values above x” we see that

FYk+1
(x) = FYk

(x)+

(

n

k

)

xn−k(1− x)k.

This recursion gives all distribution functions and density functions, for example

fY2
=

dFY2

dx
=

d

dx
(xn +nxn−1(1− x)) = n(n−1)xn−2(1− x)
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b. We seek

mk = E(YK) =

∫ 1

0
x fYk

(x)dx =

∫ 1

0
x

d

dx
FYk

(x)dx

where the last equaility is a consequence of the fundamental theorem of calculus.

Combining this with the recursive expression for Yk+1 yields

mk+1 = mk +

(

n

k

)

∫ 1

0
x

d

dx

(

xn−k(1− x)k
)

dx

where (by partial integration)

∫ 1

0
x

d

dx

(

xn−k(1− x)k
)

dx =−
k!(n− k)!

(n+1)!
.

Hence

mk+1 = mk −
n!

k!(n− k)!
·

k!(n− k)!

(n+1)!
= mk −

1

n+1
.

It is straight forward to compute

m1 =
∫ 1

0
x

d

dx
xndx = n

∫ 1

0
xndx =

n

n+1
[xn+1]10 =

n

n+1

which yields the general result

mk = 1−
k

n+1
.

10. To confirm that it is a Nash equilibrium, we assume everyone is bidding (n− 1)/n

times their valuation and show that it is not beneficial for a single bidder to deviate

from this strategy.

The revenue of a bidder with valuation V and bid X is

U(X) = (V −X) ·P(X > all other bids) = (V −X) ·P

(

n

n−1
X > all other valuations

)

= (V −X)

(

n

n−1
X

)n−1

, if X < (n−1)/n, else (V −X)

The function is maximized when

0 =
dU(X∗)

dX
⇒ X∗ =

n−1

n
V

which shows that the the claim in the problem text is true.

From the definition it is straight forward to find the probability of winning the auction

Pi(Vi) =V n−1
i .

A result from the lecture gives the expected payoff Si through

dSi

dVi

=V n
i ⇒ Si(Vi) =

V n
i

n
.
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