Market Driven Systems
Laboratory Exercise 1
Implementation of a Batch Process Control System

Department of Automatic Control
Lund Institute of Technology
Last update August 2011

r","

Figurel The batch reactor.

1. Introduction

In this laboratory exercise you will implement a sequertd@itrol system for a batch
reactor process, see figure 1. You will also implement a eliscPl controller for
controlling the temperature of the reactor. The develofnoérthe control system
will be made in JGrafchart, a graphical programming languiagplemented in Java
and developed at the department. The control system witl igstested against a
simulation and then evaluated against the real process.

The process to be controlled is a batch reactor, which is taubén the following
way: First an amount of reactant A is added with the use of agodrhen the reactor
is heated and an endothermic reaction starts, which turngohie product B. When
the reaction is ready the reactor is emptied using anothepp®nce the reactor is
empty it needs to be cleaned before the next batch can be hmatle laboratory
exercise water is used as the reactant and product. Anieleowler simulates the
endothermic reaction.

Preparations

Before the laboratory exercise you should have read thisuaiaend solved the
preparatorexercises. Make sure to study and understand the intradutctidGrafchart
in section A, prior to attending the lab.

2. Getting started

Login aslab_batch, no password.
Open a terminal window and start JGrafchart with the comnia#idf chart.

Rather than starting from scratch, opetart.xml in JGrafchart, it contains some
definitions and structure. You should now have the same wiadxs in figure 2.

Finally, ensure that the process is connected to a 230 V sackkto the lab PC via
serial cable. There is a switch on the side of the processeldale it is switched on.
A LED at the front of the process is lit when the process is bthd LED is green
everything is OK. If it is red, press the reset button on tlle sif the process. If the
LED still does not turn green, contact the lab assistant.

3. Laboratory Equipment

The process consists of a small tank with an electrical helditbas a number of
measurement and control signals, which are tied to vasabléheTop workspace of
the application in JGrafchart.

The electrical heater is on when the boolean varidbket is 1 (true). In the bottom

of the tank there is a cooler, which is used to simulate thetia The cooling is on
when the boolean variabt&o1l is 1. An agitator in the tank makes sure there are no
temperature gradients in the liquid. The agitator is sthnging the boolean variable
Agitator. There is one pump for filling and one for emptying the tankeyrlare
controlled using the boolean variabl&sPump andOutPump respectively.

It is also possible to start or stop the pump, cooler and tagifaom theClient
OpCom window shown in figure 2(d).

There are two real variables connected to transmitters énptiocess. Théevel
variable is in the range 0-1, corresponding to 0—10 V fromdkel sensor. A larger
number corresponds to higher water le®lmp is in the range 0-100, which corre-
sponds to 0-100C.

The process has some interlocks built in, e.g. it is not pstd heat the tank if
the level is too low. In the case something prohibited tallesepthe process sets the
Error signal variable to 1 and the LED on the front of the processstued. If this
happens, try to resolve the cause and then press the retmt htithe side of the
process. Ask the lab assistant if this fails.

4. Modeling and Smulation

We will control two states in the batch reactor: the wateel@nd the temperature of
the water.

s

| XML | GUl
FC Var
Function Chart

Initial Step

Step
0
Transition

A

Parallel Split

_—
Parallel Join

]
[m]
]

Wl
Workspace Object

File Edit View Execute Misc Help

Messages:| |V‘
[Top: Lab3
T
Measurements Control Signals
Wait
Real 0.0 Real 0.0 Eool O Eool O Eool O Bool O Boal O
Tem Lewel InPurmn) QutPum) Heat itatar Coal
== 0 <] s} < Ag
Logical Signals
S_Fil — |Eou|] |Eou|] ||Euo\ 0 ||Buo\ 0 |Buo\ 1 ||Buo\ 1 |
Start StopHeat Control_On 1_On Simulation Flot
==0
Workspaces
(] (m] (m} (] O (e}
; m] m| m} m] m] O
S_Heat — m} m] O O m] m]
Sensar PID Sockets 10 P Logic
==0
Control Panel
T Stansequence | StopHeating |
S_Empty ——|
Update
=0 Sim.on | Sim_off |
|=Part On | I-Fart OFf |
. -
Cip
Reset-PID
J ¢

Temperature

&0
S0
40
20
20
10
Q T

(a) JGrafchart with the Top workspace of the applicatiormshg.

-400

Control

T T
350 -300 -250

T T
-200 -150

T
-100 -50 a

T T
200 =250

A

Water Tank Status: EMPTY
InPump: OFF

OutPump: OFF

Heat: OFF

Agitator: OFF

Couler: OFF

Mode: Simulation ON

(c) Tank animation

T T
=200 -150

(b) Plotter

T T
-100 =50 o) 50

Start Agitator

Stop Agitator

Start InPump

Stop InPump

Start QutPump

Stop OutPump

Start Plot

Stop Plot

Start Simulation

Stop Simulation

Cooler On

Cooler Off

Increase Control

Decrease Control

Quit

Quit Server

Temperature:

20.000

(d) Cli

Water Level:

0.025

ent OpCom

Figure2 Windows of the graphical user interface.

4.1 Water Level Dynamics

Let us denote the water level as a function of time with in meters. Mass conser-
vation gives the differential equation

AT =t o (/5])
Here g, [m3/9 is the flow of water from the in-pump angh, [m3/s is the flow
from the out-pump. The tank cross-section ared is 0.06°7T m?. As the dynamics
are simple there will be no need for advanced control, siropleff control of the
pumps will suffice. The pumps have a maximum capacity of 15nl/tout this will
not be fully exploited. The water level measurement frompfaeess is normalized,
h(t) /hmax, SO that it becomes a number between 0 and 1 in JGrafchart.

4.2 Water Temperature Dynamics

Let us denote the temperature witkt) [°C]. In our simple model we will assume the
temperature is uniform throughout the tank. This is not cetefy true, but we will

use an agitator to make this assumption close to reality.t@imgperature dynamics
are modeled by energy balance, described below. The cothbpeific heat of the
water and the tank are represented by the constahikg®C| and their combined
mass is denoterth [kg]. The heat conduction between the tank and room is modeled
by k [W/°C]. Further, there is a heat sourggs (W] and a heat sinkjeyo [W]. The
balance equation becomes

mCdT B
dat
The room temperaturé,oom is approximately 20C. Notice that if the heater and

cooling is off the water temperatuiie will tend to T,oom, Which makes sense. (2) is
only valid for temperatures below the boiling point and abthe freezing point.

K- (Troom— T) + Oheat — Gcool (Troom—T) [W]. (2)

The coolingqeeel (T) is provided by aPeltier thermoelectric element. Its efficiency
depends on the temperature difference between the watéhamdom. It gets more

efficient as the temperature of the water increases. Whetethperature difference

is zero, the cooling is about 40 W. In the working temperatargye, the dependence
is well described by a linear relation. The cooling is in@ddn the lab to simulate

the endothermic chemical reactions.

The heater can deliver a maximumapgy = 150 W. It will be scaled according to

u
=1
et = 59900

whereu is our control signal and is a dimensionless number betweserd@00u is
the output from the controller we will design in JGrafchart.

[W])

As seen in (2) there are many physical parameters to deterrHiowever, for our

purpose there is no need to measure each single paramsteadnas we know the
structure of the model, we can fit the model to some experiahafdta and get a
reasonable result. Step response experiments yield

T-T+T=kKi+kKko-u [°C] (3)

when the cooling is on, at normal room temperature, and thed is approximately
one cm over the agitator. The open-loop time-constast1075 seconds. The other
constants arg; = —4.33°C andk, = 1.74°C.

4.3 Simulation

As the temperature dynamics of the real system are rehatslelv with a time-
constant of 1075 s, we will use a simulated model that runginess as fast during
the design phase of the controller. This avoids too muclotedivaiting. The anima-
tion window, see figure 2(c), shows the status of the simdlttek. It is also updated
when running the real process.

The heat control signal and the temperatur€ are plotted in another window, see
figure 2(b). The plots should be used to evaluate the coetrpikrformance. The
plotting can be halted by clickingttop Plotin Client OpCom, see figure 2(d), and
started anew by clickin§tart Plot.

JGrafchart communicates both with the real and the simdilptecess. JGrafchart
decides whether to simulate or talk to the real process bynsefthe boolean vari-
ableSimulation in the Top workspace of the JGrafchart application, shown in fig-
ure 2(a). IfSimulation is 1 the simulated model, running ten times as fast as the
real process, provides your controller with measuremeaymags. IfSimulation is

0 the real world process is used. The necessary time-saaflipgrameters is done
automatically. We will see later how to toggle this mode.

5. Sequential Control

In this part of the laboratory exercise you will develop awsatce for controlling
the batch reactor. The sequence should be described as@Giaigram and then
translated to JGrafchart. The sequence will be tested stgtia simulated process
and then evaluated against the real process.

Sequential Contral of the Batch Reactor

The reactor is making batches over and over again. The makioge batch is out-
lined below. All buttons and variables live in tlfep workspace, if nothing else is
explicitly stated.

1. The operator starts the batch by pressingttertSequence button, which
sets the boolean variabfgart to 1.
Note: Start is automatically reset by tHeogic workspace.

2. Once the start button has been pressed, the reactor dimfilted using the
in-pump, which is running as long as the boolean varidghaPump is 1. The
filling should be stopped when the boolean variafd@asor.Full (from the
Sensor workspace, which is a sub-workspaceTob) becomes 1.

3. As soon as the in-pump is stopped, the agitator shoulddredtby setting
Agitator to 1 and the heating controller should be turned on by setting
trol_Onto 1.

4. Heating control and agitation should be stopped when pleeador presses the
buttonStopHeating, which assigns the boolean variaSleopHeat the value
1. It is the responsibility of the operator to wait until a tled temperature is
reached, before pressing the button. When heating andiagiteave stopped,
the tank should automatically be emptied by means of thepomip, controlled
by the boolean variabl@utPump. The out-pump should be turned off once
Sensor.Empty becomes 1.

5. The tank needs to be automatically Cleaned In Place (Gford the batch
sequence can be repeated. The CIP procedure consists indlastd cooling
the tank: The tank should be filled until the variaBensor .Full becomes 1.
Subsequently, the agitator is started and the cooler igatet! by settingool
to 1. When temperature has dropped t6@bagitations and cooling should
stop. Temperature measurements in unitsare available through the vari-
ableTemp. Next, the out-pump empties the tank usihsor . Empty becomes
1. Finally, the out-pump is turned off. After this, executishould return to the
start state, where the process waits until the operatos@sethe start button
anew.

Note: It might happen in simulation, as well as in the real proctss, the temper-
ature is below 2%C already at the beginning of the CIP step. If this is the cdse, t
CIP step will only involve flushing of the tank.

Preparation Exercise 5.1 Draw a Grafcet diagram (pen and paper), which de-
scribes the sequence above. Use a macro step to implemeditthe

JGrafchart is different from the Grafcet standard. You rteedake some adjustments
to the sequence to be able to use it in JGrafchart, cf. seétion

Preparation Exercise 5.2 Translate your Grafcet sequence in Preparation Exer-
cise 5.1 to the programming language syntax of JGrafchalitgen and paper). It
means that in this exercise you should write (draw) the ezadé that is necessary
to run the control system. Use the exact names of the vasiaidmtioned above. See
section A for details of the JGrafchart language. Use theigea skeleton, shown in
the left half of figure 2(a).

Note: It is recommended that you use the blocks present in thetskelelowever, it
is fully possible to add or remove blocks and connections.

Note: Variables in sub-workspaces are accessible with the datioo, e.g. th&ull
variable in theSensor workspace is accessed wiflensor.Full. You can write
Sensor.Full in the body of theCIP macro step too since JGrafchart uses lexical
scoping and automatically looks in the enclosing workspédkere is no match
locally.

Programming and Simulation of the Control Sequence

Exercise5.3 Implement adiscrete level sensor inthe Sensor workspace. A workspace
is opened by right-clicking on it and selectisgow/Hide Body. The contents of
the Sensor workspace template, shown in figure 3, should now be visibla new
window. Your task is to program a JGrafchart sequence,ngettie boolean vari-
ablesFull andEmpty, using the real variableevel (which is defined in th&op
workspace and available in ttf8ensor workspace by its naméevel). TheFull
variable should be set to 1 if and onlylitvel >= 0.28 andEmpty should be 1 if
and only ifLevel <= 0.025.

Exercise 5.4 Implement your sequence from Preparation Exercise 5.2.ifTes
simulation. Compile the program by selectiGgmpile from the Execute menu
(same as the monkey wrench in the toolbar). Start the sifoolaly selectinggxe-
cute from the same menu (or the sign with a right-arrow in the tagliDon’t forget

Bool Booll

Full Em pty
Figure3 Contents of th&ensor workspace template

to press the&tartSequence button to start one batch, and t8eopHeating button
to start CIP.

Note: Execution is stopped by selectisgop from theExecute menu.
Note: You have to stop, re-compile, and execute each time you nizkeges.

Note: The boolean variableimulation, found in theTop workspace, should be set
to 1, which is the default. If you have changed it, presssthe_On button when your
program is running.

Evaluation using the Real Process

When the sequence gives a satisfying result in simulatigs time to try it on the
real process.

Exercise 5.5 Make sure that the computer and the process are connectatdand
the LED on the front of the process is green. Set the valugiafilation (Top
workspace) to 0 by clicking theim_0ff button workspace) during execution to use
the real process. You might need to calibrate the level semdoch you have im-
plemented in th&Sensor workspace. Th&mpty level should correspond to no (or
very little) water in the tank and theal11 level should correspond to water approxi-
mately 2 cm above the agitator blades. Make adequate maditifisan yourSensor
workspace for this to happen and evaluate the sequence osah@rocess.

Note: To see the real process values in the Plotter you also nedidkcseop Sim-
ulationin Client OpCom.

6. Control of the Temperature

Until now, the temperature has been controlled by means abjdRtional controller
(P controller) with proportional gain 1000, making it bebdike an on/off controller.
We will now investigate how control performance is affectadvarying the pro-
portional gain of the P controller. Subsequently, the adlar will be extended to a
Proportional Integrating (PI) controller in order to acl@dbetter control performance
(in terms of tracking, disturbance rejection and contrghal activity).

P control

TheTop workspace holds the sub-worksp&i®, containing the macro stép Controller,
in which a P controller is implemented. Make sure you und@igits implementation
prior to proceeding.

ThePID workspace also contains tR&_Controller macro step and logics to direct
execution to either the P or Pl controller. The_Controller step will be handled
later.

Exercise 6.1 Turn simulation back on. Study how the gain K of the P corgroll
influences the heating behavior. Use= 4, 15, 200. Set the reference sigratef
to 40°C. Try to explain the observed behavior.

Note: Some of the variables of tHRID workspace are not used in this lab, since we
are not interested in a derivative part. Why are we not isteckin derivative action?

Pl control

For processes working around a stationary point correspgni non-zero input
signal, P control results in a stationary control error.sTdiiror can be decreased by
increasing the proportional gain. However, this is donehatéxpense of stability
margins and noise suppression. An attractive alternativedreasing the gain is to
introduce an integrator in the controller.

A continuous time PI controller has the transfer function:

1
U(s)=K <1+ s_T.> E(s)
whereE(s) = Y;(s) — Y(s). The signals and constants are:

e U control signal

Y process output

Y, reference

E control error

K proportional gain

T; integral gain

To be able to implement this controller in a computer, thedgrating parts must be
replaced by a discrete time approximation. Here this is dpnassuming constant
control error between sample points. Introducing this apipnation, one obtains the
following pseudo-code implementation (running once pemnsa period):

Ppart = Kx(r-y)
vl = Ppart + Ipart
if vl <= umin:
u = umin
else if vl >= umax:
u = umax
else:
u = vl
Ipart = I_01d+K*h/Ti*(r-y)

Preparation Exercise 6.2 Implement the Pl algorithm in JGrafchart (pen and pa-
per). UseTemp for the latest measurement) (of the temperature. For parameters, use
the nameg, Ti, h. Calculate the nominal control signal as the sum of the terms
Ppart andIpart, which represent the internal values of the controller&pprtional
and integral parts.

The P controller used until now, provides the blocks and-damenections needed for
your Pl implementation. Its JGrafchart implementationhievgn in figure 5.

off

%— Control_On & 1_On
Control_On & !1_On |

| 7
ZEREAN b
N

Fl_Controller
- k|

F_Controller \ A
+ P_Controller.t == (h-1) Pl_Controller.t == th-1)

54

B e]

44':: IControl_On 52' Control_On & !1_On ;J':. Control_On & 1_On

Controller Parameters
E Ti Td Tr Nd Tref

Real 15.0 I-ﬂb’al.gﬂﬂﬂll Real 0.0 I Kh‘fl$-5ﬂ'.|:|| EEa]‘I‘D:l .'R’eﬁ:I'QCEE:U"l Real 0.0 I Real 100.0
L Tir Tdr T Hd - Tref umin - umax

Figure4 Contents of th@ID workspace

Exercise 6.3 Implement your PI controller from Preparation Exercise ié.2he
designated macro step in tR&D workspace, see figure 4.

Note: The Pl macro step already contains the P controller showigumdis.

Note: Notice that the temperature controller will only start ietboolean variable
Control_Onis 1, and that the P controller (as opposed to the PI contyadieised if
the boolean variablg_0n is 0. To manipulat& _0On, use thel-Part On andI-Part
0ff buttons.

Test your PI controller

Exercise 6.4 Simulate the system with a PI controller parametrizedby: 15,
T, = 2000, Tq = 0 andh = 20. Study the behavior of the system. What happens if the
control signal saturates?

In order to avoid the phenomenon mentioned above, a tgfhwr* (u-v1), where
Tr is a positivetracking constant, can be added, when updatipgrt. This term
preventsIpart from continue growing if the control signal saturates.

S Ppart = K*|(Tref- Temp);
51 1S Ipart = 0.0;
S vl = Ppart

== v1 < umin == (vl<=umax) & (umin<=vl) e==v1 > umax

S u = umin; Su=vl; Su=umag
S — 54 — 55 —

1 #1 1

52

~

Figure5 P controller for theP_Controller macro step

Notice that the final control signalis computed from a nominal control signal in
the pseudo-code for the PI controller.

Preparation Exercise 6.5 The phenomenon mentioned above is called integrator
windup. Why does it occur and how does it affect the system@ditMgour Pl con-
troller (pen and paper) to include integral anti-windup.

Exercise 6.6 Change your Pl controller sequence in JGrafchart to inchdenti-
windup. The parametérr is available on th€ontrol workspace. What happens to
the control signal whemir=200, 750, and 2500?

7. The Final Result

Exercise 7.1 As afinal part of the lab, run the entire batch sequence, divaduthe
windup-protected PI controller, on the real process. Usetimtroller parameters:

K=15
Ti =2000
Tr =750

How reliable is the model of the system used for simulation?

10

8. Conclusions

During the laboratory exercise we have developed a smaital@rogram for a batch
reactor. The program contains both a sequential part anccar®oller for temper-
ature control. This mix of control loops and logic is very goon and can be found
in all from highly complex industrial processes to electtmmestic appliances such
as laundry machines.

11

A. Introduction to JGrafchart

JGrafchart is a freeware function chart editor and exenuwiovironment developed
at the Department of Automatic Control, Lund University.

In this lab, only a subset of all elements in JGrafchart agglavle, and only what
you need to know to be able to do the lab is described in thisosec

A.1 Programming in JGrafchart

Programming in JGrafchart is done by drag-and-drop fronp#tette to a workspace.
The palette contains steps, transitions, variables, aaafmther elements. It is pos-
sible to select, delete, copy, cut, and paste objects intémelard fashion. Function
chart objects are connected by click-dragging the stubs.riifes of Grafcet have to
be followed, e.g. a step cannot be connected to a step.

s}
File Edit View Execute Misc Help
; e P
EICILIE
| XML | GUI Messages:|
FC r var | 10 | 5 Tom: Labs
Function Chart LLLCOR N3
[a]
= Measurements Control Signals
Wait
Real 0.0 Real 0.0 Eool O Eool O Eool O Bool O Boal O
Tem Lewel InPurmn) QutP Heat itat Coal
T == 0 <] [2] LtPUm i al Agitator 0o
Initial Step
Logical Signals
S_Fil — |Eou|] Bool O Bool O | Eool 0 ||Buo\ 1 ||Buo\ 1 |
Start StopHeat Control_On 1_On Simulation Flot
==0
Step Workspaces
(m] (m} (] O (e}
] ; m] m| m} m] m] O
4:. 0 s Heat — O m} O O i [m]
Transition Sensar PID Sackets o P Logic
==0
S Control Panel
Parallel Split -
StanSeguence StopHeating
S_Empty ——|
T Update
Parallel Join
== 0 Sim_on | Sim_off |
& I=Part On | I=Part Off |
[m] 3 -
o CIF
Reszet-PID
Wl 0
Workspace Object| |

Figure6 JGrafchart with palette (left) and the Top workspace of guliegtion (right).

A.2 Documentation
For more detailed information, use the documentation faafbart which can be
opened withOnline Help in the Help menu. The documentation for an object can
also be consulted interactively by using tBbject Help feature on it, i.e. the speech
bubble with an in the toolbar oiObject Help in the Help menu.
A.3 Execution
JGrafchart applications are executed periodically. Eperjod (scan-cycle) three op-
erations are performed:

1. Read digital and analog inputs.

2. Execute one scan of the application.

12

3. Update variables subject to normal actions.

Before an application can be executed it must be compileid.ildone by selecting
Compile in the Execute menu or in the toolbar. Compilation errors are indicated by
red text color of the condition expression/step actionsiEnessages are also written
to the message list.

Two types of problems may arise during compilation: symtaetrors and semantic
errors.

For example, the condition expressiprOR z would generate a syntactic error since
two consecutive variables, i.gand0OR, are not allowed. What the programmer prob-
ably meant here wag | =z.

Semantic errors means that the syntax is correct but whaagetrying to do is not
possible. One example is trying to assign to an input. Anmogixample is if name
lookup fails, e.qg. if there is not variable nameadr z in the previous example.

A.4 Grafcet Elements
In this section a selection of Grafchart elements are dasdri

Steps The name of a step is located on the left hand side and can bgethdy
click-and-edit.

Step actions are entered as text in the dialog that is opeitbdEdit in the step’s
context menu. Actions are separated by semi-colons.

Four different action types are supported:

e Enter action (Stored action): The action is executed once when the step be
comes active.
S "action";

e Periodic action: The action is executed periodically, once every scanegycl
while the step is active.
P "action";

e EXit action: The action is executed once immediately before the step-s d
activated.
X "action";

e Normal action (Level action): A normal action is used to associate thentrut
value of a boolean variable with the activation status ofstie.
N "boolean variable";

The expression syntax is similar to Java. One importanewdfice is that the literals
0 and 1 are used both for the boolean values true and falseoattiefinteger values
0 and 1. It is the context that decides the interpretation.

Supported operators are: +, -, *, /, | (negation), & (arjdpr), == (equal), != (not
equal), <, >, <=, >=.

Expressions may contain name references to variablestcharauses lexical scop-
ing based on workspaces. For example, a variable named Y depace W1 is dif-
ferent from a variable named Y on workspace W2. Referencweclea workspaces
are expressed using dot-notation. For example, a stepaoti® step on workspace
W1 can refer to the variable Y on workspace W2 with. Y.

13

The expression "stepName".x returns 1 if the step is actige G otherwise. The
expression "stepName".t returns the number of scan cyiies she step was last
activated, or O if it is not active. The expression "stepNameeturns the time, in
seconds, since the step was last activated, or O if it is ridteac

Initial Steps Initial steps are steps that get actived when the execufidmedunc-
tion chart starts.

Transitions Transitions are associated with conditions or events timild be true
in order for the function chart to change state, see figurdigk Gn the condition to
edit it.

51

== 381.t >= 10

83

Figure7 Transition

The condition expression has the same syntax as expressi@tep actions and
should return a boolean value.

Macro Steps A macro step represents a hierarchical abstraction anciognits
own (sub-)workspace, see figure 8. The sub-workspace iedfeosed witt8how/Hide
Body in the context menu. The first step in the macro step is repteddy a special
enter step. Similarly the final step of the macro step is spreed by a special exit
step. Both the enter step and exit step are otherwise oydsteps and may, e.g., have
actions.

Variables There is a variable type for each of the primitive data typest, boolean,
integer, and string. Each variable has a value and a name,chatbe changed by
click-and-edit.

Action Buttons An action button performs actions when clicked during exieou
see figure 9. The syntax is the same as for steps, except tlyab @ctions are al-
lowed.

Workspace Object A Workspace Object contains a subworkspace and is typically
used to structure the application.

Text Text objects are commonly used as comments. The text is changedligk-
and-edit.

14

N

> L
M2

N/

J1.M2

<

51

Slt ==

52

~

Figure8 Macro step M2 and its subworkspace containing the enter&tethe exit step S2

and a transition.

Sim_2n |

Action Button

Text

isim_on

Actions:

|S Simulation = 1;

[] Enabled when stopped

[ok | [cancel

Figure9 An Action Button with its action.

15

