Market Driven Systems
Laboratory Exercise 1
Implementation of a Batch Process Control System

Department of Automatic Control
Lund Institute of Technology
Last update March 2010

Figurel The batch reactor.

1. Getting started

Login with 1ab_batch, no password. To start both JGrafchart and the simulation
write start in a terminal window (which you open by clicking the termimedn in
the menu bar.) You may close the terminal window once you hawehestart.

Rather than starting from scratch, a JGrafchart file withesdefinitions and structure
is available inxkm1/1lab3_start.xml. it is opened using the 'Open’ under the 'File’
menu or hittingCtr1-0 when focus is on théGraf chart window. (Double click on
thexml directory icon and then obab3_start.xml By now, you should have the
following windows, See Figure 2:

e JGrafchart showing theTop:Lab3 workspace

e Plotter

e Tank Animation

e Client OpCom

If any of them should crash, use the following: To start JGnaft write>JGrafchart.
To start the others writestart_simin a terminal window.

Finally, ensure that the process is connected to a 230 V sackkto the lab PC via
serial cable. There is a switch on the side of the processeMake it is switched
on. A led at the front of the process is lit when the processidfdhe LED is green

everything is OK. If it is red, press the reset button on thie sif the process. If the
LED still does not turn green, contact the lab assistant.

2. Introduction

In this laboratory exercise you will implement a sequertd@itrol system for a batch
reactor process, see Figure 1. You will also implement arelisd| controller for
controlling the temperature of the reactor. The develofnoérthe control system
will be made in JGrafchart, a graphical programming languagplemented in Java
and developed at the department. The control system witl biestested against a
simulation and then evaluated against the real process.

The process to be controlled is a batch reactor, which is tauben the following
way: First an amount of reactant A is added with the use of ggpdrhen the reactor
is heated and an endothermic reaction starts, which turnsoXlie product B. When
the reaction is ready the reactor is emptied using anoth@pp®nce the reactor is
empty it needs to be cleaned before the next batch can be nmate laboratory
exercise water is used as the reactant and product. Anieleowler simulates the
endothermic reaction.

Preparations

Before the laboratory exercise you should have read thisualaand solved the
preparatorexercises. Make sure to study and understand the intraductidGrafchart
in Section 9, prior to attending the lab.

3. Laboratory Equipment

The process consists of a small tank with an electrical helitbas a number of
measurement and control signals, which are tied to vasabléheTop workspace of
theLab3 XML-file opened in JGrafchart.

The electrical heater is on when the boolean varidlbket is 1 (true). In the bottom

of the tank there is a cooler, which is used to simulate theti@wa The cooling is
on when the boolean variab®ol is 1. An agitator in the tank makes sure there
are no temperature gradients in the liquid. The agitatotadex using the boolean
variableAgitator. There is one pump for filling the tank and one for emptying the
tank. They are controlled using the variable®ump andOutPump.

It is also possible to start or stop the pump, cooler and @gifaom theClient
Opcom window shown in Figure 2(d).

There are two real variables connected to transmittersipitbcess. Theevel vari-
able is in the range 0-1, corresponding to 0—-10 V from thd kssor (larger number
corresponds to higher water levelkmp is in the range 0-100, which corresponds to
0-100°C.

1 Measurements Control Signals
Wiait
Real 37 156/| Real 0.307 Bool 0 Bool 01 Eool 0 Boal 0 Bool 0
0 Temp Lewel nPump utFump Heat Ag—itator Cool
Logical Signals
i Eoal 0 Boaol 0 Eoal 0 Bool 1 Bool 1
S_Fill —
tart topHeat Control_Gn 1_Cn imulation Plot
[———— W] Workspaces

O 0 0 O O O

: O O O O O O

5_Heat —— O O O O O O
Sensar PID Sockets L] Pifh Logic
0 Control Panel
i

StanSequence Stopfleatig |

; !

S_Empty —
Update
Sim_on | Sim_off I
=_—0 L
7 N I-Part On | I-Part off]
CIP "]
M | Reset-FID

==

Temperature

(a) JGrafchart wittTop:

Lab3 workspace

50
50
40
20
20
10 ’
0 T T T T T T T T T T
-400 -350 -200 -250 -200 -150 -100 -50] 50
Control
100
50
80
70
50
50
40
20
204
10
0 T T T T T T T T T T
-400 -350 -200 -250 -200 -150 -100 =50 o 50
(b) Plotter
=|| —— Start Agitator Stop Agitator
Start InPump Stop InPump
Start OutPump Stop OutPump
Start Plot Stop Plot
@ @ Start Simulation Stop Simulation
- Cooler On Cooler Off
Increase Control Decrease Control
i Quit Quit Server
OutPump: OFF
T Temperature; Water Level:
Cooler: OFF
Mode: Simulation ON 2 n. n u n n- n 2 5

(c) Tank Animation

(d) Client OpCom

Figure2 Windows of the graphical user interface.

The process has some interlocks built in, e.g. it is not péesgd heat the tank if
the level is too low. In the case something prohibited takasepthe process sets the
Error signal variable to 1 and the LED on the front of the processstued. If this
happens, try to resolve the cause and then press the resmt btithe side of the
process. Ask the lab assistant if this fails.

4. Modeling and Simulation

We will control two states in the batch reactor: the wateel@nd the temperature of
the water. The water level dynamics is the simplest to model.

4.1 Water Level Dynamics

Let us denote the water level as a function of time kit) in meters. The differential

equation is then

dh
Aa = Oin — Cout [mg/s]a 1)

as the mass is conserved. Hejg[m?/g is the flow of water from the in-pump
and goy [m®/9) is the flow from the out-pump. The tank cross-section aref s
0.06°rm?. As the dynamics are simple there will be no need for advacoettol,
simple on/off control of the pumps will suffice. The pumps &@amaximum capacity

of 15 I/min, but this will not be fully exploited. The watendel measurement from
the process is normalizel(t) /hmax, SO that it becomes a number between 0 and 1 in
JGrafchart.

4.2 Water Temperature Dynamics

Let us denote the temperature witkt) [°C]. In our simple model we will assume the
temperature is uniform throughout the tank. This is not cetefy true, but we will

use an agitator to make this assumption close to reality.t@imperature dynamics
are modeled by energy balance, described below. The cothbpeific heat of the
water and the tank are represented by the constahikg’C] and their combined
mass is denoterh [kg]. The heat conduction between the tank and room is modeled
by k [W/°C]. Further, there is a heat sourggs (W] and a heat sinkicyo [W]. The
balance equation becomes

dT

mca =K- (Troom— T) + Oheat — Ocool (Troom—T) [W].)

The room temperaturé.qon iS approximately 20C. Notice that if the heater and
cooling is off the water temperatuiie will tend to T,oom, Which makes sense. (2) is
only valid for temperatures below the boiling point and abthwe freezing point.

The coolingqeeo (T) is provided by aPeltier thermoelectric element. Its efficiency
depends on the temperature difference between the watéhamdom. It gets more

efficient as the temperature of the water increases. Whetethperature difference

is zero, the cooling is about 40 W. In the working temperatargye, the dependence
is well described by a linear relation. The cooling is in@ddn the lab to simulate

the endothermic chemical reactions.

The heater can deliver a maximumapty; = 150 W. It will be scaled according to

u
Oheat = lsoﬁ) [W]>

whereu is our control and is a dimensionless number between 0 anduli8Ghe
output from the controller we will design in JGrafchart.

As seen in (2) there are many physical parameters to deterrhiowever, for our

purpose there is ho need to measure each single paramsteadnas we know the
structure of the model, we can fit the model to some experiahelgta and get a
reasonable result. Step response experiments yield

T-T4+T=kKi+ka-u [°C| (3)

when the cooling is on, at normal room temperature, and thet ie approximately
one cm over the agitator. The open-loop time-constast1075 seconds. The other
constants areg; = —4.33°C andk,; = 1.74°C.

4.3 Simulation

As the temperature dynamics of the real system are rehatslelv with a time-
constant of 1075 s, we will use a simulated model that runsiness as fast during
the design phase of the controller. This avoids too muclotedivaiting. The anima-
tion window, see Figure 2(c), shows the status of the siradl&nk. It is also updated
when running the real process.

The heat control signal and the temperatur€ are plotted in another window, see
Figure 2(b). The plots should be used to evaluate the cdetrperformance. The
plotting can be halted by clickingtop Plot in Client Opcom, See Figure 2(d),
and started anew by clickir@tart Plot.

JGrafchart communicates both with the real and the simdilptecess. JGrafchart
decides whether to simulate or talk to the real process byhsefthe boolean vari-
ablesimulation in the Top workspace of your JGrafchart controller file, shown in
Figure 2(a). IfSimulation is 1 the simulated model, running ten times as fast as the
real process, provides your controller with measuremegmags. If Simulation is

0 the real world process is used. The necessary time-saafipgrameters is done
automatically. (We will see later how to toggle this mode.)

5. Sequential Control

In this part of the laboratory exercise you will develop awstce for controlling
the batch reactor. The sequence should be described as@Giagram and then
translated to JGrafchart. The sequence will be tested stgéie simulated process
and then evaluated against the real process.

Sequential Control of the Batch Reactor

The reactor is making batches over and over again. The makioge batch is out-
lined below. All buttons and variables live in tlfep workspace, if nothing else is
explicitly stated.

1. The operator starts the batch by pressingstteertSequence button, which
sets the boolean variabart to 1 while the button is depressed.

2. Once the start button has has been pressed, the reactiid sledfilled using
the in-pump, which is running as long as the boolean variztbamp is 1. The
filling should be stopped when the boolean variadd@sor .Full (from the
Sensor workspace, which is a sub-workspaceTob) becomes 1.

3. As soon as the in-pump is stopped, the agitator shoulddreedtby setting
Agitator to 1 and the heating controller should be turned on by se@itmg
trol_Onto 1.

4. Heating control and agitation should be stopped when pleeator presses the
buttonStopHeating, which assigns the boolean varialSteopHeat the value
1. It is the responsibility of the operator to wait until a tled temperature is
reached, before pressing the button. When heating andiegiteave stopped,
the tank should automatically be emptied by means of thegpootp, controlled
by the boolean variabl@utPump. The out-pump should be turned off once
Sensor.Empty becomes 1.

5. The tank needs to be automatically Cleaned In Place (GifRyd the batch
sequence can be repeated. The CIP procedure consists indlasid cooling
the tank: The tank should be filled until the variaBensor .Full becomes 1.
Subsequently, the agitator is started and the cooler igaaet by settingool
to 1. When temperature has dropped t6@bagitations and cooling should
stop. Temperature measurements in unitsare available through the vari-
ableTemp. Next, the out-pump empties the tank usiéhsor . Empty becomes
1. Finally, the out-pump is turned off. After this, executishould return to the
start state, where the process waits until the operatosgsethe start button
anew.

Note: It might happen in simulation, as well as in the real proct#sst the temper-
ature is below 28C already at the beginning of the CIP step. If this is the cdse, t
CIP step will only involve flushing of the tank.

Preparation Exercise 5.1 Draw a Grafcet diagram (pen and paper), which de-
scribes the sequence above. Use a macro step to implemediRhe

JGrafchart is different from the Grafcet standard. You rieedake some adjustments
to the sequence to be able to use it in JGrafchart, cf. Se@tion

Preparation Exercise 5.2 Translate your Grafcet sequence in Preparation Exer-
cise 5.1 to the programming language syntax of JGrafchalftden and paper). It
means that in this exercise you should write (draw) the ezadé that is necessary
to run the control system. Use the exact names of the vasiaidntioned above. See
Section 9 for details of the JGrafchart language. Use thietslte provided in the file
xml/1lab3_start.xml, shown in the left half of Figure 2(a).

Note: It is recommended that you use the blocks present in thetekelelowever, it
is fully possible to add or remove blocks and connections.

Note: Variables in sub-workspaces are accessible by lexicalisgap 'dot’-notation.
E.g., since th€ensor workspace is a sub-workspace of tep workspace, théull
variable in theSensor workspace is accessed ®ynsor .Full in theTop workspace
and macro steps defined within it. You can wilensor .Full in the body of the
CIP macro step of th&op workspace to access tiall variable of theSensor
workspace.

Programming and Simulation of the Control Sequence

Exercise 5.3 Implement a discrete level sensor in the Sensor workspace. You
access the&ensor workspace by right-clicking on the corresponding rectangl

Booll Boolld

Full Empty
Figure3 Contents of th&ensor workspace template

the Top workspace (see Figure 2(a)) and selechgw/Hide Body. The contents
of the Sensor workspace template, shown in Figure 5, should now be visibke
new window. Your task is to program a JGrafchart sequenttngéehe boolean state
variablesFull andEmpty, using the real variableevel (which is defined in th&op
workspace and available in tl#ensor workspace by its naméevel). The Full
variable should be set to 1 if and onlylitvel >= 0.28 andEmpty should be 1 if
and only ifLevel <= 0.025.

Exercise 5.4 Implement your sequence from Preparation Exercise 5.2.i{Tes
simulation. Compile the program by selecti®gnpile All from theExecute menu
(or by using the tool bar). Start the simulation by selecirgcute from the same
menu (or tool bar). Don't forget to press tlSeartSequence button to start one
batch, and th&topHeating button to start CIP. (Both are found on thep workspace.)

Note: Execution is stopped by selectisgop from theExecute menu.
Note: You have to re-compile and execute each time you make changes

Note: The boolean variabl€imulation, found in theTop workspace, should be
set to 1, which is the default. If you have changed it, pressilm_0n button Cop
workspace) once your program is running.

Evaluation using the Real Process

When the sequence gives a satisfying result in simulati@titme to try it on the
real process.

Exercise 5.5 Make sure that the computer and the process are connectetand
the LED on the front of the process is green. Set the valugiafilation (Top
workspace) to 0 by clicking theéim_0ff button (alsorop workspace) during execu-
tion to use the real process. You might need to calibrateei sensor, which you
have implemented in th&ensor workspace. Th&mpty level should correspond to
no (or very little) water in the tank and tl#11 level should correspond to water
approximately 2 cm above the agitator blades. Make adequatifications in your
Sensor workspace for this to happen and evaluate the sequence osalhgrocess.

6. Control of the Temperature

Until now, the temperature has been controlled by means ofportional controller
(P controller) with proportional gain 1000, making it bebdike an on/off controller.
We will now investigate how control performance is affectgdvarying the pro-
portional gain of the P controller. Subsequently, the anler will be extended to a
Proportional Integrating (PI) controller in order to act@detter control performance
(in terms of tracking, disturbance rejection and contrghal activity).

P control

TheTop workspace holds the sub-worksp&i®, containing the macro stéf Controller,
within which a P controller is implemented. Make sure youensthnd its implemen-
tation prior to proceeding.

ThePID workspace also contains tR&_Controller macro step and logics to direct
execution to either the P or PI controller. The_Controller step will be handled
later.

Exercise 6.1 Study how the gain K of the P controller influences the healtieg
havior. UseK = 4, 15 200. Set the reference sigriatef to 40°C. Try to explain
the observed behavior.

Note: To update the controller parameters it might be necesseriicdk theSim_0n
action button on th&op after changing the values.

Note: Some of the variables of tHEID workspace are not used in this lab, since we
are not interested in a derivative part. Why are we not isterkin derivative action?
Pl control

For processes working around a stationary point correspgnid non-zero input
signal, P control results in a stationary control error.sTéiror can be decreased by
increasing the proportional gain. However, this is donehatéxpense of stability
margins and noise suppression. An attractive alternativedreasing the gain is to
introduce an integrator in the controller.

A continuous time PI controller has the transfer function:

1
U(s)=K <1+ s_T.> E(s)
whereE(s) = Y;(s) — Y(s). The signals and constants are:

e U control signal

Y process output
Y, reference

E control error

K proportional gain
e T integral gain

To be able to implement this controller in a computer, thegraiting parts must be
replaced by a discrete time approximation. Here this is dpnassuming constant
control error between sample points. Introducing this epipnation, one obtains the
following pseudo-code implementation (running once pena period):

Ppart = Kx(r-y)
vl = Ppart + Ipart
if vl <= umin:
u = umin
else if vl >= umax:
u = umax
else:
u = vl
Ipart = I_01d+K*h/Ti*(r-y)

Off

== Control_On & 1_On

Control_On & !1_On
I N

P

v

e
F_Controller \

.:‘.‘:. P_Controller.t == {h-1) l:“:l Pl_Controller.t == {(h-1)

5

»
Fl_Contraller

N e /]

4‘%:, IControl_On El:’ Control_On & !1l_On ;J':. Control_On & 1_On

Controller Parameters
K Ti Td Tr Nd Tref
.R‘93|;2|]Q‘%| Feal 15.0 I-R§'3|.2UDU|| Feal 0.0 I K'e'i:l$-56'.f|| FReal 100 Reald 0.0 Feal 0.0 I Feal 1000
h K Tir Tdr T Nd Tref umin.umax

Figure4 Contents of th@ID workspace

Preparation Exercise 6.2 Implement the PI algorithm in JGrafchart (pen and pa-
per). UseTemp for the latest measuremen) of the temperature. For parameters, use
the nameg, T1i, h. Calculate the nominal control signal as the sum of the terms
Ppart andIpart, which represent the internal values of the controlleripprtional
and integral parts.

The P controller used until now, provides the blocks and-dauenections needed for
your Pl implementation. Its JGrafchart implementationhieven in Figure??.

Exercise 6.3 Implement your PI controller from Preparation Exercise i6.2he
designated macro step in tR&D workspace (sub-workspace Dép) in JGrafchart,
see Figure 6.

Note: The Pl macro step already contains the P controller showigur&??.

Note: Notice that the temperature controller will only start iethoolean variable
PID_On (Top workspace) is 1 and that the P controller (as opposed to tleamRI
troller) is used if the boolean variallfe On (Top workspace) is O.

Test your PI controller

Exercise 6.4 Simulate the system with a Pl controller parametrizedkby: 15,
T; = 2000, Tg = 0 andh = 200. Study the behavior of the system. What happens if
the control signal saturates?

In order to avoid the phenomenon mentioned above, a teffw* (u-v1), where
Tr is a positivetracking constant, can be added, when updatipgrt. This term
preventsIpart from continue growing if the control signal saturates.

Notice that the final control signalis computed from a nominal control signal in
the pseudo-code for the PI controller.

Preparation Exercise 6.5 The phenomenon mentioned above is called integrator
windup. Why does it occur and how does it affect the system@difMyour Pl con-
troller (pen and paper) to include integral anti-windup.

Exercise 6.6 Change your Pl controller sequence in JGrafchart to inclbhdenti-
windup. The parametelr is available on th&€onrol workspace. What happens to
the control signal whemir=200, 750, and 25007

7. The Final Result

Exercise 7.1 As a final part of the laboration, run the entire batch seqeem:
cluding the windup-proteced PI controller, on the real pesc Use the controller
parameters:

K=15
Ti =2000
h =200

Tr =750

(Don't forget to set the variabl®imulation (Top workspace) to 0. Click theim_0f £
action button to change this.)

How reliable is the model of the system used for simulation?

8. Conclusions

During the laboratory exercise we have developed a smaltagirogram for a batch
reactor. The program contains both a sequential part anccarfoller for temper-
ature control. This mix of control loops and logic is very aoom and can be found
in all from highly complex industrial processes to electtamestic appliances such
as laundry machines.

10

9. Introduction to JGrafchart

JGrafchart is a Grafcet/SFC editor and execution envirenirdeveloped at the De-
partment of Automatic Control, Lund Institute of Technojog

9.1 On-lineHelp

JGrafchart has an on-line help, which can be reached fronméneu choiceHelp.
Help about any object in JGrafchart can also be found by prgs$lse speech bubble
with an"i" on the toolbar. Once it has been pressed the marker arrovb@dgtme a
speech bubble with &". If the speech bubble with'&" is placed over any object
and the mouse button is pressed information about the objikeppear in a browser.
The browser may take some time to start. To go back to normdémuess the speech
bubble with ar'i" once again. Use the help!

9.2 Workspaces

Grafcet sequence diagrams are created interactively deiiggand-drop from a palette
containing the different Grafcet language elements. Theewece diagrams are stored
on JGrafchart workspaces, see Figure 5.

= JGrafchart (=TT

File Edit Execute Misc Help

EIEIE

bl [xu[a[a]2]c][2[e][® [2]] [] | -

[5] Top-Level: Lab3

v

GFC
 Palette

Measurements

Wait] Real 20.392}| Real 0.351 Bool 0 Bool 0 ||BDD\ o ||BDD\ o]IBWI 0 |

Temp Tevel TPump_ OwPump _ Heat Agitater Cool
o]
Logical Signals

Bool 0 Bool 0 Bool 0 Iiﬁuu\ 0 ||Buul o Bool 1 I

Control Signals ‘

S-Fill

Initial Step

Start StopHeat PID_On I_0n Simulation Plot

? 0 Waorkspaces

o o o | o o
[[a] | o O o
S-Hear o] o [} o o

Sensor FID Sockets 10 Pt Logic
§= o]

Step

=e=| 0 Control Panel
Transition SEpny StanSequence StopHeating |
.
o] Update
Parallel Split
ZAEERN Sim_on I Sim_off |
b r
Parallel Join CIp
i b A Ipaon | lPaorr |
L
> L Reset-FID
Macro Step
to |
wnomtson Trome || 4 [+

Figure5 JGrafchart with palette, menus, toolbar, and a workspace.

Workspaces can be stored to a file and loaded from a file. This 8kered using the
XML format.

If multiple workspaces are used, only one of them is the ctrfecus for menu
choices. This is indicated through a blue workspace bord#rer than the ordinary
gray border. The focus is changed by clicking on a worksp@hés also automati-
cally moves the workspace to the front.

On aworkspace it is possible to select an object or an ardaioorg multiple objects
in the standard fashion. A selected object can be moved,octliet clipboard, or
copied to the clipboard. The contents of the clipboard capasted to a workspace.

11

Grafcet objects are connected together graphically byiolicon the connection
stubs. A connection can be moved by selecting it and moviegodthe green corner
points. This is specially needed when a Grafcet object isecied to another object
that is above the first object.

A selected Grafcet object or connection is deleted usin@éhete key.

9.3 Grafcet Elements

This version of JGrafchart supports the following Grafthelements: steps, ini-

tial steps, transitions, parallel splits, parallel joingacro steps, work space objects,
exception transitions, digital inputs, digital outputsakbg inputs, analog outputs,
socket inputs, socket outputs, internal variables (read/dan, string, and integer),

action buttons, and free text for comments. Inputs and dsithave already been

configured for this lab, and are therefore not covered here.

Steps Grafcet steps have action blocks that may be made visibleldeh through
menu choices on the step menu that is obtained by doublkdrgion the step, see
Figure 6. The name of a step is located on the left hand sidet &iath be changed
by click-and-edit. Step actions are entered as text strihgsugh theEdit step menu

5 Motor=1;

51 S2

Figure6 Step with action block hidden and visible.

choice, which is found by right-clicking on the icon of thest Multiple step actions
are separated by semi-colons.

Four different action types are supported. Stored actionpulse actions) are exe-
cuted once when the step is activated. The syntax for statézha is:
S "variable-or-output" = "expression";

Periodic actions (always actions) are executed peridgicaihce every scan cycle,
while the step is active. The syntax for periodic actions is:
P "variable-or-output" = "expression";

Exit actions (finally actions) are executed once, immedtlidiefore the step is deac-
tivated. The syntax for exit actions is:
X "variable-or-output" = "expression";

Normal actions (level actions) associate the truth valwedigital output or a boolean
variable with the activation status of the step. The synteafnormal action is:
N "output";

The expression syntax follows the ordinary Java syntach 86ime minor exceptions.
One important exception is that the literal O is used bothefwresent the boolean
literal False and the integer literal 0. The context dectiesnterpretation.

The operators supported are: + (plus), - (minus), * (muttgilon), / (division), !
(negation), & (and)| (or), == (equal), != (not equal), < (less than), > (greatemi
<= (less or equal), >= (greater or equal).

Expressions may contain name references to inputs, ougndvariables. JGrafchart
uses lexical scoping based on workspaces. For example,iagblanamed X on

12

workspace W1 is different from a variable named X on workspat2. References
between workspaces are expressed using dot-notationx&mpée, a step action in
a step on workspace W1 can refer to the variable Y on worksp&esingw2.Y.

Initial Steps Initial steps are ordinary steps that are active initiallyenw the exe-
cution of the sequence diagram starts. Initial steps mag hatrons in the same way
as ordinary steps.

Transitions Transitions represent conditions or events that shoulduse (i) in
order for the Grafcet to change state. The transition esfess represented by a text
string associated with the transition, see Figure 7. A tt@msexpression is edited

81

== 81.t >= 10

83

Figure7 Transition

through thekdit transition menu choice (right click on the icon of the tréiosi).

The transition expression should return a boolean value €kpression syntax is the
same as for step actions with a few additions. The expreSsiepName".x returns 1
if the step is active and 0 otherwise. The expression "stepNa returns the number
of scan cycles since the step last was activated. A scan iygfeically 10-50 ms.
The expression "stepName".s returns the absolute timegdansls, since the step
last was activated. The expression /"boolean-variabiequrt" represents a positive
trigger event. It is 1 if the value of the variable or input Was the previous scan
cycle and is 1 in the current cycle. Similarly, the expressjtboolean-variable-or-
input" represents a negative trigger event. For exampteetipressior(/y | \y) is

1 whenever the boolean variahiehanges its value.

Parallel Splitsand Joins Parallel branches are created and terminated with parallel
splits and parallel joins. The parallel objects only allevotparallel branches. If more
branches are needed, the parallel elements can be conitestxiks, see Figure 8.

Macro Steps A macro step represents a hierarchical abstraction. Thearsaep
contains an internal structure of steps, transitions, aadronsteps represented on a
separate (sub-)workspace. The sub-workspace is madé\ésitl hidden by double-
clicking on the macro step. The first step in the macro stegpsesented by a special
enter step. Similarly the final step of the macro step is sapreed by a special exit
step. Both the enter step and exit step are ordinary stepsagde.g., have actions.
The situation is shown in Figure 9.

The sub-workspace of a macro step has a local name spacalierantained within
the name space of the macro step itself. For example, thevethkspace of the macro
step M1 may itself contain a macro step named M1, withoutingleny ambiguities.

13

51

82 53 54

—

Figure8 Parallel branching with three branches.

M2

Figure 9 Macro step M2 with internal structure. The internal struetaontains the enter
step S1 and the exit step S2.

Exception Transitions An exception transition is a special type of transition that
only may be connected to a macro step. The exception tramssticonnected on the
left hand side of the macro step. An ordinary transition @mted to a macro step does
not become enabled until the execution of the macro stepelagbed the exit step. An
exception transition, however, is enabled all the time gvtile macro step is active.
When the transition is fired the execution inside the macep & terminated and
the step succeeding the exception transition becomesedivException transitions
have priority over ordinary transitions in cases where lao#fire-able. An exception
transition connected to a macro step is shown in Figure 10.

Internal Variables Internal variables are variables that can be both read frain a
written to. Four types of variables are available: real alales, boolean variables,
integer variables, and string variables. Associated vatthevariable are its value and
its name, see Figure 11. Both can be changed by click-artid-edi

Action Buttons An action button performs an action when clicked on duringgex
tion. The syntax of the action is the same as for stored atiba step, see Figure 12.

14

M2

M2t>5 N/

S1

Figure 10 An exception transition connected to macro step M2. The pi@e transition
will fire when M2 has been active longer than 5 scan cycles.

|B|:u:u| 0 Int. 0

Cpen Count

Figure1l Boolean variable (left) and integer variable (right).

Multiple actions are written on one line separated by sevtoss.

= Assignment Button
Name:
a a [sim_on |
o Sim_on
Action:
|S Sirnulation=1; |
| Ok | | Cancel |

Figure12 Action Button with its action.

Workspace Object To easier organize the programs in JGrafchart one can use the
workspace object. A workspace object on the top level wakspcontains a sub-
workspace that can be used just as the top level workspace.

Free Text Text comments can be added to a workspace by drag-and-dribye of
Free Text text string on the palette. By single-clicking on the tex thxt string can
be edited. By double-clicking on the text a menu is shown wheis possible to
change font, size, colour, etc of the text.

9.4 Execution

Grafcet sequence diagrams are executed by a periodic thssadiated with each
top-level workspace. The thread cyclically performs thoperations:

1. Read Inputs. The values of the digital inputs are read.

2. Execute Diagram. All the transitions in the diagram areckled. Steps are
activated and deactivated.

15

3. Write Outputs. The values of the digital outputs are emitt

Before a sequence diagram can be executed it must be comphiedis done by
selectingCompile All from theExecute menu or by using the buttons on the toolbar,
see Figure 5.

Two types of problems may arise during compilation: pargimgrs and symbol table
lookup errors. Parsing errors are actually detected afredmn the step actions and
transition expressions are entered. For example, theiticanexpression (y OR z)
would generate a parsing error. (The syntactically coreagiression should béy

| z)). Symbol table lookup errors occur if a name reference doegxist, e.g., if
there does not exist any variables namex z in the previous example. Both parsing
errors and symbol table lookup errors are indicated by agdamthe text color of
the transition expression or step action from black to réwr& will also be an error
message written in the field next to the stop button on thév&ol

In the Execute Diagram part of the execution cycle the following operations are
performed. For each transition in the diagram, the trasiéixpression is evaluated.
If it is O, then the transition icon is changed to red. If it istie transition icon is
changed to green. If, additionally, all steps precedingttassition are active, then
the steps preceding the transition is marked to becomeidaizct in the next cycle,
and all the steps succeeding the transition are marked toreeactivated in the next
cycle. When all transitions have been checked, the changtepfstate is effectu-
ated. In addition to the things above, step actions are éx@é@nd the step timing
information is updated.

Programming in JGrafchart

Programming in JGrafchart is done by dragging and dropplojgod from the pallete

in Figure 5 on to a workspace. The objects are connected bkirdj on the stubs
of and object and drawing a line to the object it is to be cotetkavith. The rules

of Grafcet has to be followed: A step cannot be connected temand so on. The
steps and transitions can be edited. Variables and inpdt®atputs are defined by
dragging and dropping them on a workspace. After the funatiagram has been
built the workspace has to be compiled and if there are noethe function chart

can be executed.

16

