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Game Theory. Exercise 9
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Let x be the number of cars going from startAcandy the number of cars going
directly fromA to end. Consequently,—y cars use the new road. Total travel time is

X2 (4000 y)?
J(XY) = —— + 45(4000— X) + 45y 4 ~—— I

Minimizing with respect tax andy givesx* = 2250 andy* = 1750. The new travel
time per car is hence

l k
el Y) ~ 64T,

i.e. a gain by 18 s, compared with the situation before thenoad and by 15.3 min-
utes compared to the situation with the road, but withoutreéired planning.

Comment: Improving a road, or building a new road, can nevereiase total travel
time if centralized planning is used. With decentralizeghping it surpisingly can.

Xy — Xln XYy X7y

and maximize both sides with respectytoe get

m};alexy > m;’;lxmxlnAxy, VX.

Since this holds for al, it also holds for thex minimizing the left hand side, so

minmaxAy, > maxminA,.
X y w = y X xy

Let p:=P(X =black). The game fronY’s perspective, knowin’s strategy becomes
Y
red black
| -9(1-p)+5p = 14p-9| 5(1-p)-p = -6p+5
This means that can choose between the two lines in the figure, and will chtuse
upper one. The optimal choice for the minimi2érs hence to use the valyg = 0.7,

since this minimizes the value of the upper line. This willegan outcome of .8, and

the game hence favors the column player “I”.

Since we know minmax maxmin the outcome will be the same analysed foém
perspective, knowinY strategy. But to verify this lefj = P(Y = black). This reduces
the game to

X red | -9(1-q)+5q = 149-9
black | 5(1-9)-q =-6g+5
with optimal solution at 1¢* — 9= —6q* +5=- q* = 0.7, also giving outcome 0.8.




The maximization ovey is equivalent to selecting the maximal element in the vector
x"A. The second row" A < a 1" upper bounds this maximal element by The
bounda is minimized overx (first row). The last two lines constrainto be a valid
probability vector (positive elements, which sum up to 1).

Denote the strategies= p;(Bach) andq = p(Bach).
For pz(Bach) < 1/3, player 1 prefers Stravinsky:= 0.
For po(Bach) = 1/3, player 1 is indifferentr = [0, 1].
For pz(Bach > 1/3, player 1 prefers Bachn:= 1

The best response functions= B;(q) andqg* = By(r) are shown in the figure. The
intersection(s) are the Nash equilibrium.
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. Bach and Stravinsky (cf. lecture notes).

Player 2
Bach Stravinsky
Player 1 I.3ach 2,1 0,0
Stravinsky 0,0 1,2
. Rock-paper-scissor (cf. the lecture notes).
Player 2
rock paper  scissor
rock 0 1 -1
Player 1 paper -1 0 1
scissor 1 -1 0

. Consider the game below.

Player 2

I r

Player 1" 0.0 | 3-1
d| 00| 11

Assume first that 1 starts. Choosiagyill result in (0,0), while choosingd will result
in (1,1) (given that 2 is rational). Hence, if 1 starts, the outcom# bé (1,1). If,
instead, 2 starts, the optimal strategies will (bau) or (I,d), both resulting in the
outcome(0,0).

Consequently, both 1 and 2 benefit from 1 being the leader.



Denote byp = P(worker shirking andq = P(boss inspecting For the worker, the
game then reduces to

ork | -w
shirk | -fq

worker

Similarly, for the boss the game reduces to
boss
not inspect inspect

| g@-p) | g(@-p)+p-i|

The corresponding best response curves are shown in the hglow.
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The Nash equilibrium occurs in the intersection
AL

For the game instanae= 1, f =5,i = 3,g= 1 this corresponds to the worker working
3/5 of the time and the boss inspectingslof the time. The expected outcomes are
then
Uworker = —W= —1
Uboss= g(l_ p*) = g

. The expected outcome for the boss is now always decreasedgcting, in fact

Ubosd P,d) =9(1—-p)(1—0a)+(g—i)(1-p)g—ipg=—ig—gp+g

which is maximized byy* = 0. The situation for the worker is unchanged, and from
the best response curve we see that his best response wilkb4, i.e. shirking.



b. The boss declares his strategy, definedjpbwhereupon the worker chooses The
Stackelberg strategy of the boss is then

q =arg ng]a)uboss(cb Bworker(Q)) = arg n?qa)(g — 9Bworker(d) —i0).

From the figure we can see that the best response from the misrke

1 ,q9<¥
p* = B\Norker(Q) = [0,1] ,q= VTV
0 ,gq>¥

The best response function fpe=w/ f is the entire interval, which complicates things
somewhat. However by using agy> w/ f one will achieve the responge = 0. This
means that the any inspection rate abewe will induce work being the optimal
response.

The outcome for the boss will then ge- iqg which can be made arbitrarly close to
g—iq-=g—iw/f >0

Due to the fact that the boss needs to declare his inspeetieinradvance, an equilib-
rium has arisen in (work, inspeuat/ f). Note that this situation is more advantageous
for the boss than the outcome 0.

a. The probability density function of each random varialfle= X = {Xy,..., Xy} is
fx, (X) = 1 and their distribution functions are given by

X
Fx (X) = Prob(X < x) :/ i (t)dt = x.
0
Let Yy be the ¥ largest element iX. l.e.,Y; is the largest, and so on. The distribution

function forY; is easily calculated using the observeration ¥at x means that all
n variables are below. The probability for this is

a0 = [P0 =0

and the density function for thg can then be calculated froffiy, = dd% = nx

The distribution function folvy is

n—-1

Ry, (X) = ProlYi < x) = P(at most k-1 values are aboxg

Splitting the event “at most k values above x” into the disicdvents “at most k-1
values above x ” and “exactly k values above x” we see that

n
R = Py + (02
This recursion gives all distribution functions and denéiinctions, for example

_dFYz_ d n n—1 _ n—2
fy, = Ix _d—X(x +nx"(1-x)) =n(n—1)x" “(1—x)




10.

b. We seek

1 1 d
mk:E(YK):/O xfyk(x)dx:/o X P (X)dx

where the last equalility is a consequence of the fundam#émtalrem of calculus.
Combining this with the recursive expression Yor 1 yields

_ n\ [ d /.« k
m<+1—m<+<k>/ox&<x (1—x))dx

where (by partial integration)

14, K (n—k)!
/Oxd—x<x I‘(1—x)">dx:—(nfl)!).

Hence
. n Kiin—k)t 1
K-k (n+1)! % gt

It is straight forward to compute

M1 = Mk

n

m = /1x£x”dx: n/lx”dx: n R —
o " dx 0 n+1 " hr1

which yields the general result

To confirm that it is a Nash equilibrium, we assume everyortgidding (n—1)/n
times their valuation and show that it is not beneficial foirgye bidder to deviate
from this strategy.

The revenue of a bidder with valuati®hand bidX is

U(X) = (V—X)-P(X > all other bidg = (V — X)-P <nTan > all other valuation}

n—-1
—(V—X) (ﬁx) ., ifX<(n-1)/n, else(V—X)
The function is maximized when

du (X*) n—1
0 dXx = n

which shows that the the claim in the problem text is true.
From the definition it is straight forward to find the probékibf winning the auction

R(V) =V"™
A result from the lecture gives the expected pay®through

as N
v V=S =



