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Lecture 7: Distributed Control using Price Mechanisms

• Motivation - why distributed optimization?

○ Duality in Linear Programming

○ Finding optimum through distributed iterations

Distributed systems

Some systems are distributed by nature: e.g. Energy
Production:

◮ Electric companies buy electricity from different producers,
sell to consumers

◮ Produced electricity must match consumed electricity
(which varies over day)

◮ Need reliable (but slow) source (e.g. nuclear power) and
less reliable (but fast) source (e.g. wind power)

◮ How much reliable and how much fast electricity is
needed?

◮ How much to pay for different electricity sources to get the
desired amounts of electricity?

Distributed systems cont’d

Large production companies:

◮ Several sub-divisions, each producing several products
◮ Objective: Maximize company profit (not sub-division profit)
◮ Few common resource (e.g. packing) is shared

Can be optimized centrally by head-quarter. The resulting
problem might be too large.

Distributed optimization:

◮ Each sub-division maximizes their profit (smaller problem)
◮ Head-quarter coordinates such that the common resource

is fully used (if needed) and that the most profitable
products are produced if common resource is limiting
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Linear Programming Example

The following example is used throughout this lecture:

A company consists of two sub-divisions. One sub-
division manufactures garden furniture (by sawing and
assembling), the other sub-division manufactures sleds
(by sawing and assembling). Each division manufactures
two different kinds of their respective products. Both sub-
divisions send their products to a common painting sta-
tion. The objective is to maximize company profit.

Linear Programming Example

Product # of items Profit / item
Garden Furniture 1 x1 c1
Garden Furniture 2 x2 c2
Sled 1 x3 c3
Sled 2 x4 c4

Constraints for sub-division 1:

7x1 + 10x2 ≤ 100 (Sawing)

16x1 + 12x2 ≤ 135 (Assembling)

Constraints for sub-division 2:

10x3 + 9x4 ≤ 70 (Sawing)

6x3 + 9x4 ≤ 60 (Assembling)

Painting Constraint:

5x1 + 3x2 + 3x3 + 2x4 ≤ 45

Linear Programming Example

Mathematical formulation:

Maximize c1x1 + c2x2 + c3x3 + c4x4
subject to 7x1 + 10x2 ≤ 100

16x1 + 12x2 ≤ 135
10x3 + 9x4 ≤ 70
6x3 + 9x4 ≤ 60
5x1 + 3x2 + 3x3 + 2x4 ≤ 45
x 4 0

Linear Programming

The problem is on the following general form:

Maximize cT x

subject to Ax 5 b, x 4 0

which was studied in the MPC-lecture.

Over the next couple of slides we introduce the dual of this
problem
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Linear Programming Duality

Linear Program:

p∗ =

{

max
x

cT x

subject to Ax 5 b, x 4 0

where p∗ = cT x∗ is the optimal value attained by x∗.

For the constraints Ax 5 b, introduce dual variables λ 4 0 and
construct the corresponding dual function �(λ):

�(λ) = max
x40

[

cT x + λT(b− Ax)
]

The second term in the bracket is non-negative when Ax 5 b.
Hence �(λ) ≥ p∗.

Linear Programming Duality cont’d

Tightest upper bound to p∗ obtained by minimizing �(λ):

d∗ = min
λ40

�(λ) = min
λ40
max
x40

[

cT x + λT(b− Ax)
]

Optimal value d∗ for this min-max problem is attained by x = x∗

and λ = λ∗.

Further we have that p∗ = cT x∗ = d∗. This equality is referred
to as strong duality

This min-max problem is used later to distribute the optimization

Dual optimal values and d∗ can be obtained by solving

min
λ

bTλ

subject to ATλ 4 c,λ 4 0

Note symmetry to primal problem

Optimality Conditions

x∗ is primal optimal if and only if there are dual variables λ∗

such that

Ax∗ 5 b ATλ∗ 4 c

λ∗ 4 0 x∗ 4 0

(Aix
∗ − bi)λ

∗
i = 0 (ATj λ∗ − cj)x

∗
j = 0

These conditions are called the KKT-conditions for this
LP-problem

Interpretation of Dual Variables

Dual variables can be interpreted as marginal price for
resources:

If the capacity for a resource is increased by 1, the total profit is
increased by the corresponding dual variable.

This gives insight to which resource to increase to gain most

Numerical Results

Optimal solution for Division 1 (left) and Division 2 (right).
Common constraint active (i.e. equality holds).
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Numerical Results

Optimal dual variables and their respective constraints:

Constraint Dual variable
7x1 + 10x2 ≤ 100 1.04
16x1 + 12x2 ≤ 135 0
10x3 + 9x4 ≤ 70 0
6x3 + 9x4 ≤ 60 0.4

5x1 + 3x2 + 3x3 + 2x4 ≤ 45 3.2

Optimal value: p∗ = cT x∗ = 272

If common (painting) constraint capacity increased to 46,
optimal value becomes 272+ 3.2 = 275.2

Company would gain most by increasing painting capacity
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Distribution of LP Example

Solve the LP example

Maximize c1x1 + c2x2 + c3x3 + c4x4
subject to 7x1 + 10x2 ≤ 100

16x1 + 12x2 ≤ 135
10x3 + 9x4 ≤ 70
6x3 + 9x4 ≤ 60
5x1 + 3x2 + 3x3 + 2x4 ≤ 45
x 4 0

in a distributed fashion using the dual problem
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Distribution of LP Example cont’d

Dual problem when constraint with all variables is “dualized”:

min
λ≥0
max
x40

cT x + λ(45− 5x1 + 3x2 + 3x3 + 2x4)

subject to 7x1 + 10x2 ≤ 100
16x1 + 12x2 ≤ 135
10x3 + 9x4 ≤ 70
6x3 + 9x4 ≤ 60

For fixed λ = λ̄ , the inner maximization can be decomposed to
two sub-problems (one for each sub-division) P1 and P2:

P1 :











max
x1≥0,x2≥0

c1x1 + c2x2 − λ̄(5x1 + 3x2)

s. t. 7x1 + 10x2 ≤ 100
16x1 + 12x2 ≤ 135

P2 :











max
x3≥0,x4≥0

c3x3 + c4x4 − λ̄(3x3 + 2x4)

s. t. 10x3 + 9x4 ≤ 70
6x3 + 9x4 ≤ 60

Distribution Example cont’d

With fixed x = x̄ head-quarters can update the dual variable λ

to decrease the value of the outer minimization problem:

λ̄+ = λ̄ −α (45− 5x̄1 + 3x̄2 + 3x̄3 + 2x̄4)

where α is the step-size, which is chosen so that λ̄+ ≥ 0 is
maintained.

Motivation, the dual objective with λ̄ is

�(λ̄) = pT x̄ + λ̄(45− 5x̄1 + 3x̄2 + 3x̄3 + 2x̄4)

and with λ̄+:

�(λ̄+) = pT x̄ + λ̄+(45− 5x̄1 + 3x̄2 + 3x̄3 + 2x̄4) =

= pT x̄ + λ̄(45− 5x̄1 + 3x̄2 + 3x̄3 + 2x̄4)−

−α (45− 5x̄1 + 3x̄2 + 3x̄3 + 2x̄4)
2 ≤ �(λ̄)

Distributed Optimization Algorithm

1. Initialize algorithm by λ (0) = 0 and x(0) = 0.

2. For fixed λ = λ (k) let the sub-divisions solve their
respective optimization problems to find the state vector
x(k).

3. Define
λ (k+1) = max(0,λ (k)−α (k)(45−5x

(k)
1 +3x

(k)
2 +3x

(k)
3 +2x

(k)
4 ))

4. Set k← k+ 1 and go to step 2.

Convergence to optimal value and convergence in dual
variables guaranteed with this algorithm, if the step size λ k is
appropriately chosen

Convergence in primal variables guaranteed if objective strictly
concave

A Convergence Theorem

Suppose qλ (1) − λ∗q ≤ R and consider the iteration

λ (k+1) = λ (k) −α k�
(k)

where �(k) satisfies the “subgradient” inequality

f (λ∗) ≥ f (λ (k)) + (�(k))T(λ∗ − λ (k)) for all λ (k)

and f satisfies the Lipschitz condition

p f (u) − f (v)p ≤ Gqu− vq for all u,v

Define f (k)best = min{ f (λ
(1)), . . . , f (λ (k))}. Then

f
(k)
best − f (λ

∗) ≤
R2 + G2

∑k
i=1α 2k

2
∑k
i=1α k

In particular f (k)best → f (λ∗) as k→∞ if α k =
1
k
.

Distributed Optimization Algorithm

Problem: Objective in LP not strictly concave (only concave)

This issue can be resolved in different ways:

◮ Add concave term to objective that do not alter optimal
solution (might be difficult to keep distributed structure of
the problem)

◮ A convex combination of all generated primal variables
k

∑

j=0

µkj x
j with certain requirements on µkj and on the

step-parameter α k gives convergence in primal variables

This is not pursued further here

Comments on Distributed Optimization

◮ Decomposition scheme is called dual decomposition
◮ Dual decomposition most useful for large problems with

◮ few constraints involving all variables
◮ many local constraints

◮ Applicable to other types of optimization problems as well
(such as quadratic problems)

Numerical Results

Primal variable iterates (x) for division 1 (left) and division 2
(right) with their respective local constraints. Triangles show
optimal solution (which is not in a corner in division 2 due to the
constraint with all variables). The numbers show the fraction of
iterates in that corner.
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Numerical Results

Same as previous slide where a certain convex combination of
the solutions is plotted. These converge to the primal optimal
solution. The numbers correspond to iterate number.
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