Predictive Control
Laboratory Experiment 2

Direct Adaptive Control Structures

Department of Automatic Control

Lund Institute of Technology

Introduction

The purpose of this laboratory exercise is to design and study different types
of direct adaptive controllers. The lab consists of a theoretical part concerning
a first order process, and an experimental part concerning a second order DC
servo. The purpose is give you a better understanding of how the adaptive
self-tuning regulators (STR) can be formulated and leveraged to attenuate load
disturbances with certain frequency domain characteristics.

In the first part of the lab we consider a simple first order system and derive a
PI controller, minimum-variance controller and direct adaptive controller (see
Section 1). In second part of the lab a DC-servo is controlled using a standard
PID controller, as well as a direct self-tuning regulator. Here we will derive an
STR with an integrator to attenuate constant load disturbances (see Section 2).
In the final part of the lab, iterative learning controll (ILC) will be studied to
improve reference following (see Section 3).

The laboratory session consists of a set of preparatory exercises {1, 2, 3, 4, 7,8, 11},
which are to be solved before the session. The remaining if the 14 exercises
should be solved during the laboratory session. Some of the preparatory exer-
cises require Simulink files which can be retreived from the course homepage
http://www.control.lth.se/course/FRTN15/.

Helpful Matlab Commands

help Matlab help, try for example help control

tf Create transfer function model.

bode Plot Bode diagram.

margin Plot Bode diagram with gain- and phase margins.

c2d Convert continuous-time system to discrete-time.



1 Disturbances and Minimum-variance Control

The purpose of this section is to illustrate some properties of a direct adaptive
controller on a control problem with time-varying high-frequency disturbances.
The difficulty is that the frequency of the disturbance can be quite close to
the the bandwidth of the controller. With a traditional PI controller it is then
difficult to obtain a sufficiently high gain at the frequency of the disturbance.
However with a model of the disturbance it is possible to design a controller
that is tuned to the disturbance. Such a controller can have a very high gain at
the disturbance frequency.

1.1 The Process

To illustrate the power of adaptive control in light of changing disturbance
patterns, we will investigate a simple first order system
B(g™")  bg!

Aqh) " T—ag?

H(g ") = (1)

with some disturbance v(t), such that the finite difference equation becomes
y(t+h) = ay(t) + b(u(t) + v(t)) (2)

The process dynamics is thus very simple - an integrator with known gain. The
disturbance is modelled narrow band noise, where A4(qg~1)v(t) = e(t), with

Aalg™) =1~ aaq+q2, (3)
such that the finite difference equation takes the form
v(t) — aqu(t — h) + v(t — 2h) = e(t). (4)

with ag = 2cos(wh) (see Figure 1). This generates coloured noise with a sinu-
soidal disturbance in the time-domain located at the frequency w (see Figure 2).
Nominal parameter values are a = b = h = 1 and w = 10!, corresponding to
the red magnitude plot in the bode diagram.



u(t) v(t)

u (1) N OIS by w® ult) oo b
+C(g™") ~I\§) 11z gt . o °| Ru = Tu, + Sy \z}/} 11z agi

Figure 1: Flow charts for the PI and minimum variance controllers (left) and
the direct adaptive minimum variance controller (right).

n
=3
=3

o
o
T

o
[
T

I

Magpnitude (dB)
@
o
T
Il

o
I

&
3

Frequency (rad) 10° 10'

o
-
o

Figure 2: Noise model magnitude at w = 107! (red) and w = 1 (black).

1.2 Controller Design

We will compare three different controllers for the process, a proportional-
integral controller (PI), a minimum variance controller (MV) and finally an
adaptive minimum variance controller (DAMV). The PI controller does not
have enough complexity to sufficiently reduce the effects of the disturbance,
while the MV-controller incorporates the disturbance model to achieve much
better performance. The DAMV-controller is a direct adaptive controller based
on the minimum variance controller, which will be shown to yield good perfor-
mance and the capability of adapting to attenuate disturbances where w(t) is
time-varying.

In order to evaluate the controllers qualitatively, we define a metric in which to
compare them. Let ¢ € [0,T] denote time during which the system is simulated.
Furthermore, and assume that the frequency of the disturbance is constant
at some frequency w = w* over the course of a simulation. Let u.(t) be the



controller reference, and y(t) denote the system response. Then we define

- / Jue(t) — y(0)|dt ~ 3 Bluc(hk) — y(hk)],

k=1

7]

w=w*
as the absolute error between reference and response, taken over the entire

simulation time.

1.2.1 Design of PI controller

A PI-controller is first designed. This controller has a simple structure.

(¢ = Du(t) = —(s0q + s1)y(t)
With the process model
(¢ —a)y(t) = bu(t)
the pole placement design equation becomes

(@ —a)(g—1)+b(s0q + 51) = q(q — am)

where the observer pole is placed in the origin. The controller parameters sg
and s; are found from

qt: —1—a+bsp=—an
@ a+bs; =0
This gives
so = (I+a—am)/db
s1 = —afb

and the controller becomes

u(t) =u(t —1) — soy(t) — syy(t — 1)

Exercise 1 (preparation)

Implement the PI controller in the Simulink model /exercisel/pi_sim.mdl.
How does it perform for w = 0.17 What about if if the frequency of the distur-
bance is increased to w = 17 Write down the resulting error metric E in both
cases, and plot the bode diagram of the transfer function from v(¢) to y(¢t) and
comment on the diagram.



1.2.2 Design of Minimum Variance Controller

To account for the disturbance in a better way we need a more complex controller
which incorporates the disturbance model in the design procedure. We will
therefore design a minimum variance controller for the problem.

The noise model is given by
Aa(qu(t) = v(t +2) —aqu(t +1) +v(t) = e(t +2)
where ag = 2 cos(wh) and the process model is

AlQy(t) = y(t +1) — ay(t) = b(u(t) + v(t))

so that
AAdy(t) = bAdu(t) + b@(t + 2)

We write this as
Ay=DBu+Ce

with
A = AAg=(q—a)(¢® —agq+1)
B' = BA;=0b(¢*—aqq+1)
C/ — q3
ety = be(t—1)

The Diophantine equation we have to solve is
AR+ B'S =¢B’

with the constraint that B’ is a factor of R. To get a monic R(q) we divide the
right hand side by b. This will give us a solution, R(q) and S(q), that is a factor
b smaller which does not affect the controller —S(q)/R(q). Hence we solve

AR+ B'S=¢B'/b

with
R=RB'/b

Cancellation of B’ /b gives
(q—a)(¢® — agg + 1)R' +bS = ¢

The minimum degree solution has deg R’ = 0 and deg S = 2. We get R’ = 1
and the coefficients in S(g) can be computed from

¢ —a —aq +bsg =0
q 1+ aqa+bs; =0
@ —a—+bsys =0



This gives
R(q) = ¢+rqg+r2=R(qB(q)/b=q¢" —aaq+1
S(q) = soq®+s1q+s2 = ((a+ aa)q® + (=1 — aga)q + a)/b

and the control law becomes

u(t) = aqu(t —1) —u(t —2) + %(—(a +aq)yt)+ (1 +aga)y(t — 1) —ay(t — 2))

Exercise 2 (preparation)

Implement the MV controller in the Simulink model /exercisel/mv_sim.mdl
tuned to attenuate disturbances at w = 0.1. How does it perform for w = 0.1?7
What about if if the frequency of the disturbance is increased to w = 17 Write
down the resulting error metric E in both cases, and plot the bode diagram of
the transfer function from v(t) to y(t) and comment on the diagram.

1.2.3 Design of Direct Adaptive Controller

The minimum variance controller was designed using the disturbance model
and is therefore tuned to that model. If the characteristics of the disturbance
change, the controller might perform badly. To cope with changing disturbances
we will therefore design an adaptive version of the controller. If we let the design
equation (with A, canceled ) operate on the output y(t) we get

(Alg)R(q) + (@)y(t 0)a’ /by (t)

Using the input-output relation A( Yy(t) = (q) ( ) we get

B(q)(R(q)u(t) + S(q)y(t)) = B(q)q® /by(t)

and we can cancel B(g). This results in

R(q)u(t) + S(q)y(t) = ¢*/by(1)
or
b((q° + r1g + r2)u(t) + (s0q” + s1q + s2)y(t)) = ¢*y(t)
The relation above holds for the correct controller and we can therefore use it

to directly estimate the unknown controller parameters. The parameter b is
assumed to be known so we can rewrite the relation as

y(t)/b—ult —1) = ¢ (t —1)8

where the left hand side is known and

pt—1)=(ut-2) ult-3) yt-1) yt-2) yt-3))"
and -
9:(7'1 ro So S1 82)

The parameter vector can now be updated using an RLS algorithm. The esti-
mates are then used in the control law derived previously for the MV controller.



Exercise 3 (preparation)

The direct adaptive MV controller has already been implemented in the Simulink
model /exercisel/da_sim.mdl, and initialized to attenuate disturbances at
w = 0.1. How does it perform for w = 0.17 What about if if the frequency of
the disturbance is increased to w = 1?7 Write down the resulting error metric £
in both cases. What if you pause the simulation at ¢t = T'/2 =~ 250 and change
the disturbance, does the controller adapt the MV-controller? How is the rate
of adaption and noise sensitivity affected by the forgetting factor A7

2 Control of the DC-servo

Next, we will design and evaluate controllers for angular position control of a
simple DC-servo with a flywheel. The system is modelled using Netwon’s law
as a second order process

Jij(t) = —dy(t) + ku(t) + v(t), (5)
where
y [rad] Angular position,
v [rad] Angular disturbance,
u [4] Control signal current,
J [kg-m?*] Moment of inertia,
d [N -m-s] Coefficient of viscous friction
k[N -m/A] Motor torque constant.

Inserting values found in a simple system identification experiment,
k/J 11.2

G(s) & = . 6

() s(s+d/J) s(s+0.12) (6)
The corresponding pulse transfer operator is then
B(q) big+0

H(q) = =5 (7)

Alg) @ +agt+as

The closed-loop characteristic polynomials A,,(¢) and A,(g) are conveniently
defined as the discrete-time counterparts to the continuous time polynomials

Ame(8) = 8% 4 20mwms + w2, (8)
Ape(s) = s+ wo. (9)
For future reference, the sampling interval is set to Ty = 0.1. The nominal
controller design (conforming with typical industry standards) is a fixed relative
damping of ¢, = 0.7, and a natural frequency of w,, = 5. Furthermore, we will

use an observer defined by w, = 7. The system with a self-tuning regulator is
shown in Figure 3.



e(t)

1
1—g¢71
v(t)
ue(t) u(t) big L + bog 2
y(t) TS \Z_;/ 1+a1g! +aq7?

Figure 3: The closed loop system with the DC servo, step disturbance model
and a self-tuning regulator.

2.1 Fixed PID control

Instead of deriving of the adaptive controller directly, we start simple by con-
trolling the angular position using a fixed PID controller. The goal is to get to
know the DC servo and test the robustness of your tuning when changing the
process parameters. The well-known feedback law is defined with control error
e(t) = uc(t) — y(t), whereby control signal u(t) is computed by

u(t) = K <e(t) + T%/e(t)dt + Tdd‘;(tt)> .

Exercise 4 (Preparation)

Discretize a PID controller using finite difference approximation (use backward
difference for the derivative and forward difference for the integral part) and
determine the resulting pulse transfer function. What are the orders of the
numerator and denominator?

Exercise 5

Tune a PID controller with an acceptable control performance for the DC pro-
cess by opening the pidDCsim.slx. Which values of parameters K, T;, T, seem



suitable? Test the robustness of your tuning by changing the process parameters
during the simulation.

Exercise 6

When you have found a controller that works well in simulations, you can try
it on the real process. Open the pidDCreal.slx model, enter your parameters
from the previous exercise and vary the process parameters (e.g., increase the
moment of inertia of the plant, change the damping). How does the control
performance change? Would you opt to re-tune the PID controller if the process
parameters change?

2.2 Direct Adaptive Control

With a PID controller one can make an arbitrary pole placement for a system
of order no greater than 2. In this section, this fact is exploited to derive a
method for online adaptation of the parameters in a self-tuning PID (STUPID)
controller - a direct adaptive controller with integral action.

Exercise 7 (Preparation)

Similar to the MV controller, derive the linear regression model for the Direct
Self-Tuning PID with integral action and zero cancellation, i.e. a controller
incorporating the noise model A; = (¢ — 1). In addition, find the explicit equa-
tions for computing the control signal u. Before you start with this assignment,
it is strongly recommended to read Chapter 8 in Adaptive Control - Second Edi-
tion, paying special attention to pages 121-128. It may also be helpful to revise
chapter 6 in the course book.

Exercise 8 (Preparation)

Since the controller output is limited by a saturation nonlinearity, the integrator
could give rise to the wind-up phenomena. Introduce an anti-windup observer
polynomial A,,,, specify how it enters the computation of the control signal u,
and also give the order of the anti-windup polynomial.

Exercise 9

Simulate the Self-Tuning PID and find a suitable parameter tuning. How does
the control signal behave? Can you explain? Change the process parameters
during simulation and observe the behaviour of your controller.



Exercise 10

Test your best controller setup on the real process. Try to vary the process pa-
rameters (e.g. vary the moment of inertia of the plant). How does the controller
behave? How much variation in the parameters can you handle? Investigate
the effect of the forgetting factor in your controller.

3 Iterative Learning Control

In this part of the laboratory session we will examine the method of Iterative
Learning Control (ILC) for improving the reference following when performing
repeated tasks. Errors in the reference following can have many causes; unmod-
elled dynamics, poorly tuned control parameters, different kinds of disturbances,
measurement noise, friction etc. If the system response is highly repeatable, in
the sense that a certain reference signal sequence will generate roughly the same
response whenever it is repeated, then ILC can be applied to decrease the con-
trol error. However, if stochastic disturbances dominate or if the dynamics vary
from one run to another, other methods than ILC should be considered.

The ILC method is intuitive and simple. We apply the desired reference signal
sequence {yq} to the system and record the whole error sequence {ex} = {ya}—
{yx}. Based on the error sequence, we then modify the control signal {uy;1}
to improve the response for the next iteration. These two steps are repeated
this until the deviation from the reference is acceptable.

The ILC-correction {uy} is pre-determined and applied in “open-loop” during
one run, but is updated from feedback information between the runs. In the
lectures, we have seen different kinds of update laws for Iterative Learning Con-
trol in the lectures. Here we will try with a version of the so called heuristic
approach.

{ups1} = Qa({ur} + La{ex})

where {ey} is the sequence of errors from previous run, {uy1 } is the sequence of
new ILC-corrections, Q4 and L4 are linear discrete time filters. As the filtering
is made “off-line” between two runs, when we have access to the whole sequences
of data and may choose Q4 and L, to be non-causal filters.

Exercise 11 (Preparatory)

Study the Matlab script ILC_setup.m and make sure you know the difference
between causal and acausal filtering. Try to filter a sequence [1 : 10] with the
filter Gy = 2* using noncausalfilter.m and with the filter G5 = 1/2% using
filter.m, respectively.

10



Exercise 12

Open the model /exercise3/ILC_pidDCsim.mdl and run the ILC iterations
by pressing the yellow box (which essentially calls the run ILC_iteration.m
script). Modify the filters Qq = 1/(s/p+ 1) and Ly = az” in the Matlab script
ILC_setup.m. How does (8 affect the ILC performance, and what may be a
reasonable value? How does « affect the rate of convergence, and what may be
a reasonable value? How does the pole p affect the control signal sequence, any
how should it be chosen?

Exercise 13

Once you have found a suitable filter, open and run the ILC on the real process.
How will the system perform? Can you mention any reason for why the method
starts to degenerate after a number of iterations?

Document history:

Created: September 2004 by Stefan Solyom and Anders Robertsson
Additional material by: K. J. strm and H. Olsson

Additional material and heavy revision: Marcus Greiff

11



