Department of

AUTOMATIC CONTROL

UNIVERSITY

FRTN 15 Predictive Control

Final Exam March 14, 2018, 8am - 13pm

General Instructions

This is an open book exam. You may use any book you want, including the slides
from the lecture, but no exercises, exams, or solution manuals are allowed. Solu-
tions and answers to the problems should be well motivated. The exam consists
of 6 problems. The credit for each problem is indicated in the problem. The total
number of credits is 25 points. Preliminary grade limits:

Grade 3: 12 — 16 points

Grade 4: 17 — 21 points

Grade 5: 22 — 25 points

Results
The results of the exam will be presented in LADOK by March 21.
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1. Letp = d/dt and assume that we have a first order process, y = G(p)u, with

_ b
T p+d

G(p)

for some unknown a,b > 0, and a reference model, y,, = G, (p)u., with

— bm
ptan

Gm (p)

for some known parameter a,, b,, > 0. Both she static gain and the pole
location in the process model is unknown, leading us to consider a feedback

u(t) = 601(t)uc(t) — Oa2(t)y(2).
With this feedback, we will choose the adaptive gains by the Lyapunov rule,

do; , dbs ,

— = rue(B)e(t),  —= = yy(t)e () (L

for some positive constant y.

a. With the proposed feedback law, write the transfer function from u. to y.
Assume that the feedback gains, 64, 8,5, are constant and that process param-
eters are known. Which choice of gains result in perfect model-matching?

(1 p)

b. As the process parameters are unknown, we will consider a MRAS driving the
error e = y — y,, for time-varying gains 6 (¢), 62(¢). Show that the function

V(x) = %(e2 + a(b61(t) — by)? + aa + bl — am)2),

is a valid Lyapunov function provided the Lyapunov update rule in (1). What
could be a suitable state vector x in the Lyapunov function? 3 p)

Solution

a. The closed loop transfer function, G.;(p), from u, to y is

bb,
p+a+bby

y(t) = Ga(p)uc(t) = 1o (2).

If a, b are known, our goal is to achieve G.;(p) = G, (p), whereby

bO b [O1=bu/b
p+a+bby p+an 02 = (am —a)/b’

b. A valid Lyapunov function V(x) must satisfy
(1) Positive definiteness: V(x) > 0 for all x\{0},

(2) Radial unboundedness: |[V(x)|| — oo as ||x|| — oo,
(3) Negative time derivative: V(x) < 0.
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The Lyapunov function is a positive definite function of some time-varying
error x(t). When satisfying the above conditions, V(x) decreases in time, and
our system is stable. If the inequality is replaced by negative definiteness,
i.e. V(x) < 0 for all x\{0}, the the Lyapunov function will decrease until
eventually reaching a minimum of V(x) = 0 at x = 0, and our system is
asymptotically stable.

From problem a., the gains should be chosen such that
b61(t) — bm, a+ bbs(t) — am,
for model matching. It is then reasonable to define an error-state
x(t) = [x1(2), x2(t), x3(2)]T = [e(2), bOL(t) — b, @ + BOs — apy].

whereby x = 0 accomplishes model matching and a zero error e(¢). With this
error-state, we set out to verify that

1
V(x) = 5 (& + alb61(t) = bn)? + (@ + b0 — am)?),
is a valid Lyapunov function. This function clearly satisfies the conditions (1)

and (2) by definition. However, it remains to show that the time-derivative is
decreasing. This is done by computing

V(x) = e6 + a(bby(t) — bbby + c(a + by — ap)bbs, @)

as %2 = bf; and x3 = bby. The derivative de/dt is found by first computing

d
2 = —ay+bu = —ay + b(61(D)uc(t) — 6a()y(1)),
dym
% = —QmYm + bnlec.
whereby
de _dy dym
dt  dt dt

= —ay + b(61(t)uc(t) — O2(8)y(¢) + amym — bmtic

= —ay — b (t)y(t) + amym + (b61(t) — bm)uc

= —ay + any — any + amYm — b02(t)y(t) + (b61(t) — bp)ue
= —ame + (am —a—b0(t))y(t) + (b61(¢) — bm)uec.

Insertion of the computed error time-derivative in (2) yields
V(x) = —ame® + (b01(t) — by)(eue + abby) + (am — a — b6a(t))(ey — abby),

We don’t know what b > 0 is, but > 0 can be defined such that ab is any
positive constant. Let ab = y > 0. Insertion of the Lyapunov-rule in (1) yields

V(x) = — ame® + (001(t) — bm) (eue — eu.) + (am — a — bOs(t)) (ey(t) — ey(t))

= —ame2 <0,

as a;;, > 0 by definition. We have then shown the conditions of (1) positive
definiteness, (2) radial unboundedness and (3) a negative time-derivative.
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2. Consider a double integrator system discretized at a time step of A [s],
E+1 1 h k h?/2
- e (e o
x2(k+ 1) 0 1] [xa(k) h

where x(k) = [x1(k) x2(k)]". This system is to follow some reference
x,(k) = [x1-(k) x2-(k)]" using an MPC controller to minimize a cost

H, H,
J =) |x:(t+hE) —x(t+ hE)|q+ Y _ |[u(t + hE)||z,
k=1 k=1

for some Q > 0, R > 0. The system is to follow a square positional reference
in x1,(%), alternating between +1 at a period of 7' = 10 [s], and a zero-velocity
x9r(k) = 0. For the combinations

o Q_[IOO 0] R_1 (H)Q_[lo 0] R_1
“lo 1|77 “lo 1077
(III)Q—[I O]R—l (IV)Q—[I O]R—loo
1o 100f " 7 o 1|7 T

the corresponding system response is shown in Figure 1.
a. Can the defined reference trajectory be followed by a double integrator? (1 p)
b. Pair each tuning (I)-(IV) with a plot (1)-(4) and give a short motivation. (1 p)

c. Assume that we intend on implementing the controller in practice, where we
may expect a load disturbance on the control signal. Give an explanation as
to why such disturbances may arise, and propose a modification of the linear
model in (3) to achieve a better robustness against the load disturbance.

(2 p)

Solution

a. The chosen reference trajectory cannot be followed by the system, as any
change in position x1(¢) requires a non-zero velocity xa(¢). This is a common
problem in control,

b. The correct answers are
(D<>(1) As @11 >> Q22, R, we put a large cost on deviations (x1, — x1)? which
results in aggressively following the positional reference trajectory.

(ID<(2) As Q@11 = Qo2 > R, we put equal weight on positional and velocity
reference tracking. We visibly see that [ x3d¢ ~ [(x1, — x1)%dt.

(IID<(3) As Q22 >> @11, R, we only care about following the velocity reference,
which is zero, forcing the positional response to be close to constant.

(IV)>(4) As R >> @11, @22, the control signal is kept very close to zero at all
times, which results in very poor reference following in x; and xo.
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Figure 1 Controlling the double integrator along a square reference in x1,(¢) with xg.(¢) =
0. Responses in x1(t) (blue), x2(t) (red) and control signal u(¢) (green).

c. Reality is rarely linear, and assuming that the modelling errors are slowly
time-varying, these may be modelled as a load disturbance. With a load
disturbance on the control signal, d(%), the dynamics may be written

x(k + 1) = Ax(k) + B(u(k) + d(k)),

where A and B are stated explicitly in (3). To incorporate an estimated
disturbance d(%k) in the MPC formulation, we define an augmented state
vector x¢(k) £ [xT(k) d(k)]". The augmented system dynamics are then

x“(k+1) = [‘2 ﬂxe(k) + [E’] u(k),

and to make use of this augmented model, we need to implement an estimator
which estimates both the entire augmented state vector. As the system dy-
namics are linear, and assuming the noise distribution is gaussian, a Kalman
filter may be a good choice.
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3. Design a minimum-variance controller with integral action for the process

b

HP(Q) = z— a;

subject to a load disturbance v(¢), such that
y(t+ 1) = ay(t) + b(u(t) +v(z)).
Answer the following questions.

a. Define a suitable disturbance model A;(z)v(¢) = e(t + 1). (1 p)

b. Using minimum degree pole placement design, find a negative feedback law
R(2)u(t) = —S(2)y(¢) expressed in terms of the process parameters. (2 p)

c. What can you say about the feedback? Where are the closed loop poles located?
Are minimum variance controllers generally robust to changes in the modelled
noise characteristics? (1p)

Solution

a. By the internal model principle, incorporating integral action is done by
modelling an integral disturbance. A suitable noise model is given by

Ag(2)v(t) =v(t+1) —v(t) = e(t+ 1),
i.e., a discrete time integrator z/(z — 1).

b. With the disturbance model, the system is written
Aq(2)A(2)y(t) = b(Aa(2)u(t) +e(t + 1)).
We write this as
A'y = Blu+ (e,

with

A = AAg=(z2—a)(z—-1)

B BA; =b(z—1)

c’ 22

é(t) = be(t—1)

The Diophantine equation we have to solve is
AR+ B'S =2°B,
with the constraint that B’ is a factor of R. To get a monic R(q) we divide
the right hand side by b. This will give us a solution, R(z) and S(z), that is
a factor b smaller which does not affect the controller —S(z)/R(z). We solve
A'R + B'S = 22B'/»b,
with
R =R'B'/b.
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Cancellation of B’/b gives
(z—a)(z—1)R' +bS =2~

The minimum degree solution has deg R’ = 0 and deg S = 1. We get R’ =1
and the coefficients in S(z) can be computed from

2t 0=—a—1+bsg
0

A 0=a+ bsy

This gives

R(z) = z+r=R(2)B'(2)/b=2—-1
S(z) = soz+s1=bYa+1)z—b""ta

and the control law parametrised by a and b becomes

u(t) = }nggy(t) s u(t)=u(t—1)+ %((a + 1)y(t) —ay(t — 1))

c. With perfect knowledge of the process parameters, we get the controller

2 S() b lYa+1)z—b""a
" R(z) z—1 ’

H.(2)

which, with negative feedback, results in a closed loop system

Ho()Hy(z) _(1+a)z—a

Hcl(z) = 1+ HC(Z)HP(Z) - 22 )

recognised as a deadbeat controller, as the poles of the characteristic poly-
nomial are located in the origin - in effect, we have designed a deadbeat
PI-controller. As we showed in the Laboratory 2 exercises, the minimum
variance controller is very sensitive to changes in the modelled disturbance
characteristics, and may perform worse than a standard PI controller if the
noise is mischaracterised.

4. From optimal control, it is known that for a function @ : x, u — R satisfying
Q" (x4, us) = ¢ + min Q" (xz41, u') (4)
u

where x4, u;, ¢; are the state, control and cost at time ¢, the optimal state-
feedback controller given by

u; = argmin @ (xy, u'). (5)
u/

An adaptive controller is obtained by adaptive estimation of the function Q.
To this end, we introduce @, (x, «) as a linear combination of known functions
¢ : x,u — R, parameterized by w, according to

Qu(x, u) = Z¢i(x, ww; = ®(x, u)w, w e RL
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Figure 2 System response with e(¢) ~ N(0, 1), a = 1.4, b = 0.4 discretized at A = 1 with
v(¢) (top) u(¢) (centre) and y(¢) combined with u.(¢) (bottom).

The goal is thus to adapt the parameters w such that our function @,, respects
(4). To this end, consider at time ¢ the value produced by min, @, (x:+1, ')
to be fixed, such that y; = ¢; + min, @, (x:41, ') is a known scalar quantity
given a trajectory {x, uT,cT}t::ll. The problem is now reduced to that of

estimating w such that @, (x;, u;) = y; and we want to do this by minimizing
the following cost function

Z (vt — Qu(xs, ut))T(yt — Qu (x4, uy)). (6)

t

a. Devise a method to minimize (6) with respect to w online, i.e., the parameters
w are to be updated after each time-step. (2 p)

b. If we are able to estimate @ accurately, (5) will be an optimal controller under
the cost function that generates c;. The optimization problem in (5) must be
solved at each time step to calculate the control signal and this can be hard
to do fast enough if the sample time is small. To circumvent this problem, we
consider a new function, u,(x) : x — R, parameterized by p, according to

ue=pp(x:) = > gi(xu)p; = ®(x,u)'p, peER,

12

and adjust the parameter vector p online with the following update rule

d
p<—p— a@(x, u)%Qw(-x’ u)|u:/u(xt); (7
where o is a small step-size parameter. Relate the update rule (7) to the

optimization problem (5) and motivate why u; = p,(x;) will be a good approx-
imation of (5). (2 p)
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Solution

a. The problem of estimating w in @, (x;u;) = ®(x, u)'w = y; = is linear
in the parameters and can thus be solved using, e.g., the recursive least-
squares method for a quadratic cost function or gradient descent for a general
(differentiable) cost function.

b. The update rule (7) is equal to

du d
b <—p— OC%%QLU(% u)lu:y(xt))
which shows that the update rule performs gradient descent with respect to
p of @y (xz, u(x:)), hence, the parameters p will be updated in the direction of
decreasing Q(x;, 1(x;)), which will on convergence lead to p(x;) being a good
approximation to the solution of optimization problem (5).

5. Given the discrete-time system Y (z) = G(z)U(z) with

z+2

G(z) = 2(z+ 0.5)

we want the output, y, to follow a given reference signal y,. In this exercise
we assume Y, is a step function, ie y,(¢) =1, ¢>0

a. The following ILC algorithm (with @ = 1)

upt1(t) = ur(t) + yq"er(t)

can be used to find an input signal u(t) = klim ur(t) that solves the problem.
—0

Figure 3 illustrates the amplitude curves |I —y2"G(z)|,=eiv for some different
values of ¥ and n. Also shown is the successful result of 100 iterations of
the ILC algorithm for one of these choices of parameters, the other three
parameter combinations do not work. Which parameter set is the working one
(a,b,c or d)? Do not forget to motivate your answer. (1p)

b. Calculating U as

z(z+0.5) v

UE) = 67 @)Y(e) = T2 (e)

and using the inverse Z-transform to obtain u does not work. Why? 1p

c. Describe how to calculate a bounded control signal, u(¢), —co < t < oo, that
will make the output equal to a step function (without using ILC iteration).
Hint. Split the inverse of G(z) into causal and anti-causal parts. Describe how
to interpret the different parts as stable recursions to find u. (1p)

d. Look at the plot of the control signal resulting from the ILC procedure.
Describe what the control signal is doing during the time interval before the
step in the reference signal to be able to accurately track the step. (1p)

Solution
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Figure 3 The ILC amplitude curves a-d (top) for different combinations of ¥ and n. The
successful result after 100 iterations of the ILC algorithm (bottom).

a. The system depicted in c) is the only candidate with a maximum amplitude
less than 1, resulting in stable ILC iterations.

b. The system can not simply be inverted because of the zero outside the unit
circle, which upon inversion turns into an unstable pole. The calculated control
signal would contain an unbounded term of the form (—2)F.

c. An expansion of the inverse gives:

_ z(z+0.5) r— 154 3
oz+2

This means that u(¢) = y.(¢t + 1) — L.5y,(¢) + x(¢) where
x(t + 1) + 2x(¢) = 3y,(¢).
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This recursion can be rewritten as a stable anticausal filter
x(t) = —0.5x(t + 1) + 1.5y,(¢).

The solutions to this with y,(¢) = 1 for ¢ > 0 is x(¢) = (—2)?, when ¢ < 0, and
x(¢) = 1 for ¢ > 0. The solution is hence

u(t) = (=2),t< -2, u(t)=051>—1

which is very close to the control signal generated by the ILC shown in the
figure.

d. The zero, located in z = —2 is located on the negative real axis, corresponding
to an oscillation at the Nyquist frequency. Since the magnitude of the zero is
greater than one, this oscillation is increasing in amplitude. When the system
is subjected to an input with these properties, nothing will be visible in the
output.

We see that the control signal is oscillating with increasing amplitude in
advance of the step change in the reference. We can interpret this as the
controller pumping energy into the system in such a way that the output
remains at zero, i.e., exciting the zero dynamics of the system using the
signal described above. When the step change occurs, the built up energy is
released in such a way that the output makes exactly the desired jump.

6. Consider the system

x(k+1) =x(k) +v(k)
y(k) = x(k) + e(k)
where v ~ N(0,1), e ~ N(0, R,) are uncorrelated with zero mean.

a. Describe the stationary Kalman filter that gives £(% | £ — 1) for the system.
Is the performance better/worse/the same as that of an exponential filter

£(k+1)=(1— x)£(k) + ay(k)
with well chosen o? 2p)

b. Determine the scalar stationary covariance P and the stationary gain K =
APCT(R,+ CPCT)™! as functions of R,. 1p)

c. Now consider the case where the state is affected by a colored noise sequence
0, modeled as normal white noise v passing through the system

C(2)
A(z)
where C(z) and A(z) are known polynomials. Explain how to implement an
optimal Kalman filter in this case. 2p)
Solution
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a. The stationary Kalman filter without direct term is given by
Rrv1lk = Zrje—1 + K(Vr — £rjp—1)

It is an exponential first order filter, the performance is hence the same.

1N 1+ VIt 4R,
P=P+1-PYR,+P)'=P="+ Z+RQ$P=%+R,

X P 1 _ 1++1+4R,
" R.,+P R,/P+1 2R, +1+1+4R,

P is increasing and K is decreasing as functions of R,.

c. The state-space system must now be augmented with the noise model C/A

wo-[ Sl

y(k)=[1 0] [;] +e(k) )

A,, B, C, is a state-space realization of C/A with A, having eigenvalues
corresponding to the roots of the polynomial A(z), the state vector x, contains
the state of the noise model and 0 is a matrix of zeros with appropriate
dimensions.
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