
Institutionen för

REGLERTEKNIK

FRTN15 Predictive Control

Final Exam October 25, 2012, 8am ­ 1pm

General Instructions

This is an open book exam. You may use any book and notes that you want, but no

exercises, exams, or solution manuals are allowed. Solutions and answers to the

problems should be well motivated. The credit for each problem is indicated in

the problem. The total number of credits is 25 points. Preliminary grade limits:

Grade 3: 12 points

Grade 4: 17 points

Grade 5: 22 points

Results

The results of the exam will be posted at the latest November 8 on the notice

board on the first floor of the M-building and on the course home page.
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1. Consider the system

yk+1 = −0.1yk − 0.8yk−1 + uk + 0.5uk−1 +wk+1 + 0.3wk,

where wk is white noise with Ewkw
T
j = σ 2wδ kj .

a. Calculate the 1-step-ahead predictor and give the covariance of the output

error. (2 p)

b. Give the minimum variance controller minimizing the variance of the sy-

stem output. (1 p)

c. Can you still use the minimum variance controller if the system to be con-

trolled is non-minimum phase? Motivate your answer. (1 p)

Solution

a. The Diophantine Equation for the 1-step-ahead predictor is:

C(z−1) = A(z−1)F(z−1) + z−1G(z−1)

(1+ 0.3z−1) = (1+ 0.1z−1 + 0.8z−2) f0 + z
−1(�0 + �1z

−1)

With this we have

f0 = 1

�0 = 0.2

�1 = −0.8

So that

F(z−1) = 1

G(z−1) = 0.2− 0.8z−1

And the 1-step-ahead predictor is

ŷk+1pk =
G(z−1)

C(z−1)
yk +

B(z−1)F(z−1)

C(z−1)
uk

=
0.2− 0.8z−1

1+ 0.3z−1
yk +

(1+ 0.5z−1)

1+ 0.3z−1

b. The minimum variance controller is

uk = −
G(z−1

B(z−1)F(z−1)

= −
0.2− 0.8z−1

1+ 0.5z−1

c. This minimum variance controller can only be used if the B polynom is

stable, i.e. it has all its roots inside the unit disk. For a non-minimum

phasse system, there are zeros ouside the unit disc which become poles of

the controller.
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2. Consider the relation given by

y(t) = arctan[ax1(t)
2 + bx2(t) + e(t)],

where e denotes noise. Derive normal equations for least squares estimation

of the parameters a, b if we are given N measurements of y(t), x1(t) and
x2(t), t = 1, . . .N . (2 p)

Solution

For the standard least squares estimate we need the parameters to appear

linearly in the equations, but we can rewrite the equation as

tan(y) = ax21 + bx2 + e.

We can now write the standard equations for our estimate as:

Y = ( tan(y(1)) ... tan(y(N)) )T

A =

(

x21(1) ... x
2
1(N)

x2(1) ... x2(N)

)T

X = ( a b )T

Y = AX [ X̂ = (ATA)−1ATY

3. Describe an indirect adaptive controller for the system

B(q)

A(q)
=

b0q+ b1
q2 + a1q+ a2

that achieves model following with

Bm(q)

Am(q)
=

bm0

q2 + am1q+ am2
.

Describe how to estimate the parameters a1, a2, b0, b1 and how to obtain the

controller R(q)u = −S(q)y+T(q)uc. No integral action is required and the
zero of the system is cancelled, i.e. B+ = q+b1/b0 (you can assume b0 ,= 0.)
Use Ao(q) = q

n with minimal n. What degrees will R,S,T have? (3 p)

Solution

We can find the parameters from standard RLS using the linear relation

y(k + 2) = −a1y(k + 1) − a2y(k) = b0u(k + 1) + b1u(k). Since this is a
2nd order system and we cancel the zero, we need degree of Ao equal to

deg(A) − 1 − deg(B+) = 2 − 1 − 1 = 0. Hence Ao = 1. With R(q) = q+ r1
and S(q) = s0q+ s1 we get the Diophantine equation

(q2+ a1q+ a2)(q+ r1) + (b0q+ b1)(s0q+ s1) = (q
2+ am1q+ am2)(q+ b1/b0)

This gives 3 linear equations for the 3 unknowns. The solution is r1 = b1/b0,
s0 = (am1 − a1)/b0, s1 = (am2 − a2)/b0.
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4. Consider the system

xk+1 = 2xk + uk + vk

yk = xk + ek

vk ∼ N(0, 1)

ek ∼ N(0, 10)

x0 ∼ N(0, P0)

Here N(0, P) stands for a Gaussian variable with mean 0 and variance P.

a. Find a deadbeat observer for the system, i.e. one with A − KC having
eigenvalue in zero. (1 p)

b. Describe the optimal time-varying Kalman filter for x̂kpk−1. (1 p)

c. Assuming stationarity, what is the Kalman filter gain, K? (1 p)

d. Which of the two described observers will have the smallest estimation

variance E(x̃2)? (1 p)

Solution

a. With K = 2 we get A− KC = 0. A deadbeat observer is hence

x̂k+1 = 2x̂k + uk + 2(yk − x̂k) = uk + 2yk

b. The time-varying Kalman filter without direct term is given by

x̂k+1pk = 2x̂kpk−1 + uk + Kk(yk − ŷkpk−1)

ŷk+1pk = x̂k+1pk

Kk =
2Pkpk−1

10+ Pkpk−1

Pk+1pk = 4Pkpk−1 + 1− 4
P2
kpk−1

10+ Pkpk−1

c. We need to find the stationary value where Pk+1pk = Pkpk−1. This gives the
solution P ( 31.32 and K ( 1.52

d. For the deadbeat observer without direct term we get x̃ = 2ek + vk which
has variance E(x̃2) = 22 ⋅ 10 + 1 = 41. The Kalman filter without direct
term gives estimation variance E(x̃2) = P ( 31.32, a clear improvement.

(Remark: Described above are observers without direct term. A deadbeat
observer with direct term is given by

x̂k+1 = yk+1

it gives eigenvalues of A− AKC in the origin. This deadbeat observer with
direct term has E(x̃2) = E(e2) = 10. The Kalman filter with direct term
has variance Pkpk = (A− KC)Pkpk−1 = 7.6.)
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5. Describe how one can handle the situation when the optimization in the

MPC controller calculation shows that no control sequence exists that sa-

tisfies all the constraints. (1 p)

Solution

One can relax the constraints, making them soft. One can use different

weights on the different constraints finding a controller that makes a weighted

combination of the constraints violations as small as possible. See Section

13.2.4 in the book.

6.

a. Is the relay system described by y = sign(u) passive from u to y? (2 p)

b. For which parameters a is the system G(s) =
s+ a

(s+ 1)2
passive? (2 p)

Solution

a. Yes. We have
∫ T

0
y(t)u(t)dt =∈ βT pu(t)pdt ≥ 0.

b. The condition for PR is that ReG(iω ) ≥ 0 for all ω . We have

ReG(iω ) = Re
iω + a

(iω + 1)2
= Re

(iω + a)(−iω + 1)2

(ω 2 + 1)2
=

ω 2(2− a) + a

(ω 2 + 1)2

which shows that G is PR precisely when 0 ≤ a ≤ 2.

7. An integrator system

ẏ(t) = ku(t)

with unknown gain k > 0 should be controlled with a zero-order continuous-
time controller

u(t) = −α (t)y(t) + β (t)uc(t)

The desired response is given by

ẏm(t) = −amym(t) + bmuc(t)

Use Lyapunov theory to find a parameter update law (α̇ = . . . , β̇ = . . .) of
an adaptive controller guaranteeing that the error e = y− ym goes to zero.
Try the Lyapunov candidate

V (x) =
1

2

(

e(t)2 +
1

k
(kα (t) − am)

2 +
1

k
(kβ (t) − bm)

2

)

(3 p)

Solution
We have V ≥ 0 and

V̇ = eė+ (kα − am)α̇ + (kβ − bm)β̇

= e(ku+ amym − bmuc) + (kα − am)α̇ + (kβ − bm)β̇

= e(−kα y+ kβuc + amym − bmuc) + (kα − am)α̇ + (kβ − bm)β̇

= −ame
2 + (kα − am)(α̇ − ey) + (kβ − bm)(β̇ + euc)
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We see that by choosing the parameter update law α̇ = ey and β̇ = −euc
we get

V̇ = −ame
2 ≤ 0

This proves that e goes to zero.

8. We want the output y of the discrete-time system Y(z) = G(z)U(z) with

G(z) =
z+ 2

z(z+ 0.5)

to follow a given reference signal yr. In this exercise we assume yr is a step

function, ie yr(t) = 1, t ≥ 0

a. The following ILC algorithm (with Q = 1)

uk+1(t) = uk(t) + γ qnek(t)

can be used to find an input signal u(t) = lim
k→∞

uk(t) that solves the pro-

blem. Figures 1a-d illustrate the amplitude curves pI − γ znG(z)pz=ejω for
some different values of γ and n. Also shown is the successful result of 100
iterations of the ILC algorithm for one of these choices of parameters, the

other three parameter combinations do not work. Which parameter set is

the working one (a,b,c or d)? (1 p)

b. Calculating U as

U(z) = G−1(z)Yr(z) =
z(z+ 0.5)

z+ 2
Yr(z)

and using the inverse Z-transform to obtain u does not work. Why? (1 p)

c. Describe how to calculate a bounded control signal, u(t), −∞ < t < ∞, that
will make the output equal to a step function (without using ILC iteration).
Hint. Split the inverse of G(z) into causal and anti-causal parts. Describe
how to interpret the different parts as stable recursions to find u. (2 p)

Solution

a. The figure in c) is the only having amplitude less than 1. It is the correct
one.

b. The system can not simply be inverted because of the zero outside the unit

circle. The calculated control signal will contain an unbounded term of the

form (−2)k.

c. An expansion of the inverse gives:

G−1(z) =
z(z+ 0.5)

z+ 2
= z− 1.5+

3

z+ 2

This means that u(t) = yr(t+ 1) − 1.5yr(t) + x(t) where

x(t+ 1) + 2x(t) = 3yr(t).
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Figur 1 The ILC amplitude curves a-d (top) for different combinations of γ and n. The
successful result after 100 iterations of the ILC algorithm (bottom).

This recursion can be rewritten as a stable anticausal filter

x(t) = −0.5x(t+ 1) + 1.5yr(t).

The solutions to this with yr(t) = 1 for t ≥ 0 is x(t) = (−2)
t, when t ≤ 0,

and x(t) = 1 for t ≥ 0. The solution is hence

u(t) = (−2)t, t ≤ −2, u(t) = 0.5, t ≥ −1.

which is very close to the control signal generated by the ILC and shown

in the figure.
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