Predictive Control Lecture 3

- . Autotuning of PID controllers
- Gain Scheduling

Material: Lecture slides. Lab 1

Slides based on Johansson 2007, Åström 2010 and Bernhardsson 2012

Views from the Field

Canadian mill audit. Average paper mill has 2000 loops, 97% use PI the remaining 3% are PID, adaptive etc. (B. Bialkowski CCA'93).

- · Default settings
- · Poor control performance due to bad tuning
- · Poor control performance due to valves, actuators or positioner problems

"Process Performance is not as good as you think." (D. Ender, Control Engineering 1993).

- More than 30% of installed controllers operate in manual
- · More than 30% of the loops increase short term variability
- · About 25% of the loops use default settings
- About 30% of the loops have equipment problems

K. J. Åström

The Foxboro EXACT

- Mimic an experienced instrument engineer
- Pattern recognition
- Rule based
- Key idea
- Start with reasonable parameters and improve them
- Requires pretuning

When to Use Different Techniques?

Automatic Tuning

K. J. Åström PID Control and Auto-tuning

Johnson Control PRAC

- PRAC is an automatic tuner for a PI controller based on pattern recognition
- Similar to Foxboro EXACT
- Yokogawa had a similar system
- Both Foxboro and Yokogawa are also developing model based systems
- Based on empirical rules
- Prior information
 - K and T_i
 - Sampling period T
- Good operational experiences
- Weakness

K. J. Åström PID Control and Auto-tuning

Predictions about PID Control

- 1982: The ASEA Novtune Team 1982. (Novatune is a useful general digital control law with adaptation) PID Control will soon be obsolete
- 1989: Conference on Model Predictive Control. Using a PI controller is like driving a car only looking at the rear view mirror: It will soon be replaced by Model Predictive Control.
- 2002: Desbobough and Miller (Honeywell) Based on a survey of over 11000 controllers in the refining. chemicals and pulp and paper industries, 98% of regulatory controllers utilise PID feedback

K. J. Åström PID Control and Auto-tuning

Automatic Tuning

Tune controller automatically on demand

Many approaches

- Empirical Mimic a good process engineer
- Model based

Experiments

- Open or closed loop
- Step responses
- Relay feedback

Methods

- Pattern recognition
- Rules crisp of fuzzy
- System identification
- Control design

Available in virtually all process control systems

K. J. Åström PID Control and Auto-tuning

Auto-tuning Techniques

- · The Ziegler-Nichols method
- · Transient response methods
- · Frequency response methods

Transient Response Methods

Step response methods—The three parameter model

$$G(s) = \frac{k}{1 + sT}e^{-sL}$$

The Ziegler-Nichols method

Adding Dynamics in the Feedback Loop

More information obtained by introducing dynamics in the feedback loop

- An integrator gives ω_{90}

Practical Details

Basic controller

- Bring process to equilibrium
- Measure noise level
- Compute hysteresis width
- Initiate relay
- Monitor each half period
- Change relay amplitude automatically
- Check for steady state
- Compute controller parameters

Ziegler-Nichols Frequency Response Method

Idea: Run a proportional controller, increase gain until the system starts to oscillate. Observe "ultimate gain K_u , and "ultimate period T_u .

Controller parameters

Controller	K_c/K_u	T_i/T_u	T_d/T_u	T_p/T_u
Р	0.5	.,	α, α	1
PI	0.4	0.8		1.4
PID	0.6	0.5	0.12	0.85

Interpretation: Find features of frequency response

Automatic Tuning of the Double Tank

Consider the double tank used in our laboratory experiments. Results obtained with one of our earliest auto-tuners.

Relay Tuning — Experimental set-up

- · Closed loop experiment
- · Stable limit cycle for large class of processes
- Much control energy close to ω_{180}

- 1. What is it?
- 2. How to find schedules?
- 3. Applications
- 4. Conclusions

Discrete-time control → Discrete-event control

GS Ref FIC

Schedule on Controller Output

Discuss when this is appropriate

Schedule on Process Variable

...when appropriate?

Schedule on External Variable

Nonlinear Valve

A typical process control loop

Valve characteristics—Crude approximation!

Results-Without/With Gain Scheduling

Without gain scheduling

With gain scheduling

Concentration Control

System performance with changing flow?

Variable Sampling Rate-Scheduled sampling

Process model

$$G(s) = rac{1}{1+sT}e^{-s au}$$
 where $T = rac{V_m}{q}, ~~ au = rac{V_d}{q}$

Sample the system with period

$$h = \frac{V_d}{n\alpha}$$

The sampled model becomes

$$c(kh+h) = a c(kh) + (1-a)u(kh-nh)$$

where

$$a=e^{-qh/\mathcal{V}_m}=e^{-\mathcal{V}-d/(n\mathcal{V}_m)}$$

Notice that the sampled equation does not depend on q!!!

Results

Discrete-event control with flow-dep. sampling h = 1/(2q).

The flows are: (a) q = 0.5; (b) q = 1; (c) q = 2

Flight Control

Pitch dynamics

Operating conditions

The Pitch Control Channel

Schedule of K_Q with Respect to Indicated Airspeed (IAS) and Height (H)

Schedule

Valve Position	K_c	T_i	T_d
0.00-0.15	1.7	95	23
0.15-0.22	2.0	89	22
0.22-0.35	2.9	82	21
0.35-1.00	4.4	68	17

Bumpless transfer param. change

Two possible implementations of the Ipart in a PID controller:

ALT1:
$$I(k+1) = I(k) + (r(k)-y(k))/T_i$$

 $U(k) = P(k) + I(k) + D(k)$
ALT2: $I(k+1) = I(k) + r(k)-y(k)$

$$U(k) = P(k) + I(k) / T_i + D(k)$$

ALT1 is best since ALT2 will give a bump in the control signal when T_i is changed!

Bumpless transfer manual-Auto

Bumpless transfer Ru=-Sy+Tu_c

$$\begin{cases} A_o v = T u_c - S y + (A_o - R) u \\ u = sat v \end{cases}$$

An chosen as a stable polynomial determining tracking rate

Can be used to "warm-start" controllers and make bumpless transfer between gain-scheduled controllers

Conclusions

- · Gain Scheduling very useful technique
 - Linearization of nonlinear actuators
 - Surge tank control
 - Control over wide operating ranges
- · Requires good models
- · Easy to use when combined with auto-tuning
- · Good operational experience
- · Issues to be considered
 - Choice of scheduling variables
 - Granularity of scheduling tables
- Interpolation
- Bumpless parameter changes
- Operator interfaces

97