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Some Stochastic Signals with unit variance Stochastic Variables
a=-0.98
2, ) ) ) " " i
_EWWW @ u, = E(x) = mean value of x
0 50 1 60 150 260 250 300

0 02 =V (x) = E(x — u,)? = variance of x

@ Cou(x,y) = E(x — uy)(y — uy) the cross-covariance
between x and y

@ Uncorrelated if Cov(x,y) =0

zWMMWMWWMWWWMWWM If x and y are (column) vectors
-2F ) ) ) ) ) 4

@ P, =V(x) = E(x — i) (x — i) = variance matrix
_ T . .
The signals seem to have different properties © Cou(x,y) = E(x — ts)(y — 1y)" cross-covariance matrix

We should design different predictors/controllers for them

How do we describe spectral properties of stochastic signals?
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A sequence of uncorrelated stochastic variables with
Ew) =0, E@})=0"  Cov(w,w,)=0, i#]

is called white noise with variance 2.

This is in some sense a "worst case" enemy, since old noise
observations reveal no information at all about the future.
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If y = Ax + b where x is stochastic and A and b known, then

® E(y)=AE(x)+b
o V(x) = AV (x)AT

Example: The system x;,1 = Axp + e;, with e white noise with
variance matrix R has

P.(k+1) = Cov(xpy1xt,1) = ... = AP (F)AT + R
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Autocovariance functions

For a stationary signal y;, the covariance function is defined as

Cyy(7) = Cov(y(k +7)y(k)")

2 min-problem: Assume that
Xpp1 = Axy + ey,

(e is white noise) and that x is stationary. Why is
Cyx(t) = A"V (x) for 7 > 0? What happens if 7 < 07 .
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Spectrum of stochastic signals

The auto-spectrum of y is defined as Sy, (2) = > C,,(k)z"*
k=—00
The power spectral density at frequency w = 2z f is given by

Syy(eiwh)
Similar definitions for S, (z) and Sy, (z)

If Y(2) = G(2)U(2) + V(2) with uncorrelated u and v then

Syy(2) = G(2)Suu(2)G" (271) + Suw(2)
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Assume |a| < 1, A = 1, and w is white noise (W(z) = 1)

1 z
Yr=—ayp-1t+wr < Y(z) = mw(z) . H—aW(Z)

1

Co(d) = ()
1 1

il l+azl+az1

L' 1
Syy(e ?) =

1+ a2+ 2acosw

Matlab: xcorr and pwelch,

Bo Bernhardsson Predictive Control 2012

Matlab simulation

Covariance function

L4 oL
b L b o v & o
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figure(1);

nr=1000; % nr of samples
a=-0.9; h=1; w=randn(nr,1);
y = filter(1,[1 a],w);
plot(y,’linewidth’,1.4)

figure(2);

[C,tau] = xcorr(y,50, ’unbiased’);
plot(tau,C,’linewidth’,1.4); hold on;
plot(tau,1/(1-a~2)*(-a). abs(tau),’r--’,’linewidth’,1.4);

figure(3); nrpoints=512;
[Pxx,f]=pwelch(y, [], [],nrpoints,1/h);
loglog(f,Pxx,’linewidth’,1.4); hold on;
loglog(f,1./(1+a"2+2*a*cos(2*pi*f)),’r’,’linewidth’,1.4)
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Stationary State Covariance

Assume A stable and v and e uncorrelated

Xpy1 = Axptup
v = Cxp+eg

Stationary covariance P, = E(xx") can be found from

P, =APAT + @,

Stationary covariance P, is then given by

P,=CP,CT +Q,
Matlab: Px = 1yap(A,Qv); Py=C*Px*C+Qe
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Real-time Parameter Estimation

Introduction

Least squares and regression
Dynamical systems
Experimental conditions
Examples

2

Conclusions

Identification Techniques

* Nonparametric methods

- Frequency response analysis
- Transient response analysis
- Correlation analysis

- Spectrum analysis

¢ Parametric methods

- Least Squares (LS)
- Maximum Likelihood (ML)
- Subspace-model identification

¢ |dentification for control
* Model approximation/ Model Reduction

Related areas: Statistics, Numerical analysis, Econometrics,

System Identification

How to get models?

- Physics (white-box)

- Experiments (black-box)
- Combination (grey-box)

Experiment planning
Choice of model structure

- Transfer functions
- Impulse response
- State-space models

Parameter estimation
- System identification/Statistics/Inverse problems
Validation

Least Squares and Regression

Introduction
The LS problem
Interpretation

- Geometric
- Statistic

Recursive Calculations
Continuous time models



Good Methods are adopted by Everybody

* Mathematics
 Statistics

* Numerical analysis
* Physics

* Economics

* Biology

* Medicine

* Control

* Signal processing

The Least Squares Method
The problem: The Orbit of Ceres

The problem solver: Karl Friedrich Gauss

The principle: “Therefore, that will be the most probable system
of values of the unknown quantities, in which the sum of

the squares of the differences between the observed and
computed values, multiplied by numbers that measure the
degree of precision, is a minimum.”

In conclusion, the principle that the sum of the squares of the
differences between the observed and computed quantities
must be a minimum, may be considered independently of the
calculus of probabilities.

An observation: Other criteria could be used. “But of all these
principles ours is the most simple; by the others we should be
led into the most complicated calculations.” s

THEORIA
MOTVS CORPORVM
COEBLESTIVM

In
SECTIONIBVE CONTOIS SOLEM AMBYENTIVAL

AVUTORE

CAROLO FRIDERICO GAVSS.

laravuny svairinys Perp. Pooruans or b fl. Hesara

Mathematical Formulation—Regression Model

y(t) = @1()01 + @a() 02 + -+ + @u(2)0n = @(t)" 0
* y—observed data
* §;—unknown parameters
* @;—known functions regression variables

Some notations

") = [p1(t) @2(8)...@u(®)], 6" =[01 62...6,]

Y(t) = [y1) y@)...y0)]", E@)=[e(1) £2)...e)]"
9" (1) ) )

(1) = ( ; ) PO = (Lo () = (@ 00)”
o7 (t) =

(i) = y()—56) =y06) - T ()0



Solving the LS Problem

Minimize with respect to 6

V(6,t) = Zs(i)z = Z (y(i) — @7 (i)0)" = % 6TA9—bTH+% ¢

N| =
N =

where

A=Y g™ b =Y @y =3 5%0)

i=1

The parameter § that minimizes the loss function are given by
the normal equations

AO=b, =0=A'b=Pb

If the matrix A is nonsingular, the minimum is unique

Example Continued

Model Z\)o i)l 82 83 \%

1 3.85 34.46
2 0.57 1.09 1.01
3 1.11 045 0.11 0.031
4 1.13 037 0.14 -0.003 0.027

Output

o v & > »
Output

o v & > ®

o
o
o
o

2 4 2
Input Input

Output

o v & @ ®
Output

o v & o ®

o
Y
o
@

2 4 2
Input Input

An Example

y(t) = by + bru(t) + bau(t) + e(t)
o=0.1
e"(T)=[1 u(t) u’(t)]
HT = [bo bl b2]
Estimated models

Model 1: y(¢) = by
Model 2:  y(¢) =bo + biu
Model 3: y(¢) = by + biu + bar?
Model 4: y(t) = by + biu + bou? + bgu®

Geometric Interpretation

E=Y—¢'6—¢%0y— —¢"0,
Find the smallest possible E?
(@) (y — 019" — 629" — -+ = 6,9") = 0

The normal equations!



Statistical Interpretation

y(t) =@ (£)6° + e(?)
0° — “true” parameters

e(t) — independent random variables with zero mean and
variance o2

If ®T® is nonsingular, then
EO=06°
cov 6 = o?(dTd)"! = %P
s2 =2V (6,8)/(t —n)
is an unbiased estimate of o?

n — number of parameters in 6°

t — number of data

Recursive Least Squares

The LS estimate is given by
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But
Zw P(t—1)710(t—1) = P(t)'0(t — 1) — p(t)pT (t)0(t — 1)

The estimate at time ¢ can now be written as

A(t—l)—P(t)w( )" (£)0(t — 1) + P(t)p(t y(t)
0(t—1) + P)p(t) (y(t) — @ (£)0(t — 1)) = O(t — 1) + K (¢)e(¢)

Want recursive equation for P(¢) not for P(¢)~! 16

D>

0(t) =

Recursive Least Squares

Idea:

* Want to avoid repeating all calculations if data new data
arrives recursively

* Does there exist a recursive formula that expresses 6(t) in
terms of 6(¢ — 1)?

The Matrix Inversion Lemma

Let A, C, and (C~! + DA"!B) be nonsingular square matrices.

Then
(A+ BCD)™

=A"'-A'B(C'+DA'B)'DA™!
Prove by direct substitution

Given A~! we can get the LHS inverse
What about the inverse on the RHS?



Recursion for P(¢) Recursive Least-Squares RLS

The matrix inversion lemma gives o(t) = 6(t—1) + K(2)(y(t) —¢" (1)8(t — 1))

. - K(t) = P(t)p(t)

= (Z w(i)wT(i)> =P(t— Do) + ¢ ()Pt — o(t)
i=1 ) P(t)=P(t—1)—P(t—1)p(t)

= (itp(i)tpT(i)w(t)tpT(t)) x (I+¢" (0P~ 1)g() 9" (P —1)
; = (I-K(t)p" ()Pt 1)

= (P(t— 1) +g(t)gT () * Intuitive interpretation

* Kalman filter

=Pt — ) Pt —1)g(?)
(

x (I+¢"(&)P(t— Do(t) " ¢ ()Pt — 1)

Interpretation of 6 and P

Hence Initial values (P(0) = r - I)

P(t— 1)) (I +¢"(0)P(t — D)g(2)) "

Example: Recursive estimate of a constant

Consider the following noisy observation of a constant
parameter

yh=0+vr, E{v} =0, E{vv;}=025; Example: Recursive estimate of a constant The parameter
variance estimate can be expressed as a state vector with

Use linear regression of y, = ¢,0 + vy with ¢, = 1 for all k. updating in each recursion according to

A least-squares estimate is found as the sample average
k
~ 1
Or = A Z;yi
i=

Include previously made summations in some state §k, which is Pr =
updated when new data arrive!!

-1 —1
Prp =Pp1t p
or \
0"Pr—1
0%+ pr1

A feasible recursive state equation where it can be noticed that p, - 0as & — oco. O

~

. 1 N
0, = Op1+ E(yk —6r_1)

k
pr = 02(Z¢i¢?)-1Nz{(é—e)(é—e)T}
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Some properties of recursive least-squares estimation

For convergence analysis, consider the following quadratic
function of the parameter error

~ 1~ PP 1om o~
Q(6r) = E(ek —6)" P, (6, —0) = 5‘9ng '6r
This function develops in each recursion according to

Q(6r) — Q(6r_1)

I
561 POy — 651 Pyl16k 1
2 2

1

s 1
= *95—1(Pk T Pk—ll)ek—l + 92—1¢k£k + §¢17;Pk¢

2

1 ~ 1
= SO0 10+ &0)° + 5 (-1 + 9, Pudr) €
1 ¢;7;Pk—1¢k 2
21+ ¢y Pr_19r
Under the assumption y, = ¢7 6 + v, so that &, = —67_, ¢, + v,

1 ¢}€Pk—1¢k 2
21+ ¢, Pr_19%

1 ~
= 5(95_1% + )% —

Q6 ~ QB11) = 307
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Forgetting Factor

0<A<1
Equivalent time constant

h h

_h/T: — — N ——
¢ A T=—17~1=2

Rule of thumb: Memory decay to 10% after

2
N_l—),

* + Forgets old information

* + Adapts quickly when the process changes
* — The estimates get noise sensitive

e — The P matrix may grow (Wind-up)

Time-varying Parameters
Loss function with discounting

V(0.0 = 53 A7 (v0) — " ()6)°

The LS estimate then becomes
6(t)=0(t—1)+ K (t)(y(t) — " (£)0(¢ — 1))
K(t) = P@t)p(t)
= P(t— 1)p(t) (A + o7 () P(t — Vg (t))
P(t)y=(I—-K(t)g"(t)) P(t—1)/ A
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Continuous Time Models
Regression model
y(t) = @1(8)01 + @2 ()05 + -+ - + @, (¢)0, = p(¢)7 0
Loss function with forgetting
t
V(o) = / o) (y(s) — (pT(s)H)zds
0
The normal equations
¢ R ¢
[ e ppt s)asiie) = [ e Ig(s)y(s)ds
0 0

Estimate is unique if the matrix

22

is positive definite.



Recursive Equations for Continuous Time Models

Regression model

Estimating Parameters in Dynamical Systems

Basic idea: Rewrite the equations as a regression model!

* Dynamical systems
- FIR models
- ARMA models
— Continuous time models
- Nonlinear models
* Experimental conditions
- Excitation
- Closed loop identification

Real-time Parameter Estimation

Introduction

Least squares and regression
Dynamical systems
Experimental conditions
Examples

2 e o

Conclusions
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Finite Impulse Response (FIR) Models

y(t) =biu(t —1) + bau(t —2) + -+ byu(t —n)
> Y6) ="t - 1)8, 0= [by...b,]"

eT(t—1)=[u(t—1)...u(t—n)]
A regression model!

§(8) = byt — Du(t —1) 4+ + by(t — Vu(t —n)

y

FIR filter - -1 [

A
6

Adjustment | ¢
mechanism

26



Pulse Transfer Function Models
y(&)+aryt—1)+--+ay(t—n)=
biu(t—1)+ -+ byu(t—n)
Write as r
y(t) = p(t—1)70

where
p(t—1)

:[—y(t—l)...—y(t—n)u(t—1)...u(t—n)]T
6= [al...anbl...bn]T

* Autoregression!
» Equation error

Nonlinear Models

Consider the model
y(t) +ay(t —1) =bu(t — 1) + bou®(t — 1)

Introduce r
0= [(l bl b2]

and
@T(t) = [—y(t) u(t) u*(8)]

y(@) =" (t-1)0

Hence

Autoregression!

Linearity in the parameters

Transfer Function Models

dny dnfly dnflu

di +a1dtn71 +"'+any:b1W+“'+bnu

as

Introduce
A(p)yr(t) = B(p)us(t), yr(t) = F(p)y(t), ur(t) = F(p)u(t)

and F(p) has pole excess greater than n

0=1[ar...an b1...5,]"
‘pf(t) = [—Pn_lyf~~-—yf pn_luf...uf]

[-p" 'F(p)y...— F(p)y p" 'F(p)u...F(p)u]

Hence, a regression model y((t) = ¢} (¢)6

28

Experimental Conditions

¢ Excitation
* Closed loop identification
* Model structure

31



Persistent Excitation

The matrix >,_ ., @(k)¢” (k) is given by

> ut(k—1) o > u(k—1u(k—n)

n+1 n+1

i ¢(0) H(l;(l) c(n—1)
6~ im %QT(D, o c(1)  c(0) c(n—2)
c(n—1) c(n—2) ¢(0)
c(k) = lim % zt:u(i)u(i — k)

i=1

A signal u is called persistently exciting (PE) of order n if the =

maAatriv £ e AAaitivA AAfinitA

Examples

A signal u is called persistently exciting (PE) of order n if the
matrix C, is positive definite. An equivalent condition

* A step is PE of order 1
(g—1)u(t) =0
* A sinusoid is PE of order 2
(¢* — 2qcos wh + 1)u(t) = 0
* White noise
* PRBS

* Physical meaning
* Mathematical meaning

Another Characterization

A signal u is persistently exciting of order n if and only if

U =1lim =3 (A(q)u(k)? > 0

t—oo t
k=1

for all nonzero polynomials A of degree n — 1 or less.
Proof Let the polynomial A be
A(Q) =aoq" ' +arg" P+t an

A straightforward calculation gives

L1
U = lim > (aou(k +n—1) + -+ ap_yu(k))”

33

Loss of Identifiability due to Feedback

y(t)=ay(t—1) +bu(t —1) +e(t), u(t)=—ky(t)
Multiply by ¢ and add, then

y(it)=(a+ak)y(t—1)+ (b+ a)u(t —1) + e(t)
Same /0 relation for all & and b such that

a=a-+ak, b=b+a

Slope -1/k%

True value

|
|
|
a a

35




Real-time Parameter Estimation Examples

1. Introduction Model
2. Least squares and regression y(@) +ay(t—1)=bu(t—1) + ()
. Parameters
3. Dynamical systems a=-09
4. Experimental conditions b=05
5. Examples é((; =05
6. Conclusions P(0) = 100-
G (¢
_ (5
pt—1)=(-y(t—-1) u(-1))
Excitation Forgetting Factor
Input: Recall
T~ N-_2
* Unit pulse at ¢ = 50 T1-x T1-4
» Square wave of unit amplitude and period 100 Parameters: 4 =1, 4 = 0,999, 4 = 0.99, 1 = 0.95
(@) . (a) (b)
1

) b
b b o

T T T T T T T T T T
0 200 600 1000 0 200 600 1000

400 600 800 1000 Time ~ Time

Time (C) B (d b
1 1
0 0 A
a a
-1 [:"‘ -1’ i;‘ Bhaainnss Y
T T T T T I T T T T T
T T T T 0 200 600 1000 0 200 600 1000
400 600 800 10_()0 Time Time

Time 39



1 Weighting of fqrgetting factors ] 25 E‘stimated‘paramete‘r

Weighting factor

038 g Colored Noise
0.6 . .
Process model and Estimator model
04 .
y()—08y(t—1) = 0.5u(t—1)+e(¢)—0.5e(t—1)
02 05¢ ] y(&)+ay(t—1) = bu(t—1)+e(t)
O L u i O ! L L L R
200 -150  -100  -50 0 0 50 100 150 200 (a) b
Time [s] Time [s] 1 (L/
6 _Data sequence y | P-matrix 0 ;‘Yd
al i 08 8 B , , , : ,
0 200 400 600 800 }I‘QOO
O 6 — b ~ 1ime
) ®) 1
0.4 y ]
Or ] 02} ] S
-2 I L I 0 . =T B a
0 50 . 100 150 200 0 50 . 100 150 200 ! " - - - ¥’<'°° )
Rolf Johansson: FRTJ‘I%]ESCL}L 2 Time [g] me

Innovations Model
Conclusions

What you should remember:

* The least squares method It is also possible to represent the output process y with only

* The normal equations one noise source w.
* The recursive equations One can find K so that y can be represented as
* The matrix inversion lemma
Xpi1 = ARp + Kuwy,
What you should master: /
v = CZxp+wp
* The recursive equations
e The role of excitation (This is obtained from the optimal Kalman predictor in Ch7)

Role in adaptive control

* Recursive estimation is a key part of adaptive control
* Recursive least squares is a useful method

44

Bo Bernhardsson Predictive Control 2012



