
Predictive Control
Lecture 10
More MPC

Department Automatic Control
Lund University

Predictive Control Lecture 10 More MPC

Lecture 10

MPC Tools - how to use it
Getting Integral Action
Example: Quadruple Tank
Example: A Lab Helicopter
Project suggestion: CVXGEN
Example: MPC on a Robot using CVXGEN

Material: Lecture 10: Manual to MPC toolbox (scan)
Matlab code

Predictive Control Lecture 10 More MPC

MPC Prediction Horizons

y(k)

ŷ(k)

r(k)

u(k)
û(k)

k k+ Hu k+ Hp t

Predictive Control Lecture 10 More MPC

MPC for Linear Systems

Model assumptions in MPC toolbox

x(k+ 1) = Ax(k) + Bu(k)

y(k) = Cyx(k)

z(k) = Czx(k) + Dzu(k)

zc(k) = Ccx(k) + Dcu(k)

Measured outputs y
Controlled outputs z
Constrained outputs zc

(no known disturbances)

Predictive Control Lecture 10 More MPC

An Optimal Control Problem

Cost function

J(k) =

Hp+Hw−1
∑

i=Hw

"ẑ(k+ i#k)− r(k+ i#k)"2Q+
Hu−1
∑

i=0

"∆u(k+ i#k)"2R

(1)

Prediction Horizon, Hp
Control Horizon, Hu
First sample to be included, Hw

Predictive Control Lecture 10 More MPC

Constraints

The MPC controller should respect the constraints

∆umin ≤ ∆u(k) ≤ ∆umax

umin ≤ u(k) ≤ umax

zmin ≤ zc(k) ≤ zmax

Some variables might be constrained, but have no reference
values
If a constrained variable is not measured, the constraints will be
put on an estimate instead

Predictive Control Lecture 10 More MPC

Why penalize ∆u(k) instead of u(k)

Simple to handle r(k) %= 0
No need to specify ur

Still possible to penalize u(k)
Just include u in z-vector: choose Cz = 0 and Dz = I

Predictive Control Lecture 10 More MPC

Solving the Quadratic Program (QP)

One can rewrite the optimization criterion on the form

min J(k) = ∆UTH ∆U − ∆UTG +ETQE

subject to Ω∆U ≤ ω

where ∆U,H ,G ,E,Q,Ω,ω are large vectors/matrices, used to
stack up the equations above for all time indices.
Details are in the MPC toolbox manual, but will not be needed

Convex problem - efficient algorithms

Predictive Control Lecture 10 More MPC

State Estimation

Use a traditional Kalman filter, having the form

x̂(k+ 1) = Ax̂(k) + Bu(k) + K (y(k)− Cyx̂(k)).

Gain matrix K obtained by solving a Riccati equation
(information about state constraints are typically not utilized,
since it is hard to do this)

Predictive Control Lecture 10 More MPC

Error-free tracking - Integral Action 1
One option is to use a disturbance observer
A step disturbance is assumed to act on the input, the
following extended model is then used (when r = 0):

















xk+1
vk+1
dk+1

















=

















A 0 B

0 I 0

0 0 I

































xk
vk
dk

















+

















B

0

0

















uk

z = yz =


Cz 0 0






xTk vTk dTk





T

ya =


Ca I 0






xTk vTk dTk





T

Using an observer with this model structure will introduce
integral action giving z = 0 in stationarity.

If more outputs than inputs, one must introduce constant output
disturbances vk on the outputs that shouldn’t get integral action
If nr inputs = nr outputs one doesn’t need ya and vk

Predictive Control Lecture 10 More MPC

Error-free tracking - Integral Action 2
Another option is to add integrator states in the model
[

x(k+ 1)
xi(k+ 1)

]

=

[

A 0

−Cz I

]

x(k) +

[

B

0

]

u(k) +

[

0

I

]

r(k)

y(k) =
[

Cy 0
]

z(k) =
[

Cz 0
]

A stabilizing feedback is calculated using the extended state.
Note that the state xi need not be estimated, since it is known
perfectly by the controller

Polynomial design interpretation to the two methods

A(q− 1)R′ + BS = AmAoB
+

where either Ao (previous slide) or Am (this slide) has an
increased order compared to the minimal order

Predictive Control Lecture 10 More MPC

Linear Properties of the MPC Controller

The MPC controller is nonlinear, because of constraints on
state and control
However, if the constraints are not active, the controller is linear
The minimizing solutions of the unconstrained QP is then

∆U(k) = (ΘTQΘ +R)−1ΘTQE(k)

= . . .

= K̄s





r(k)
u(k− 1)
x̂(k)





for some vector K̄s

Predictive Control Lecture 10 More MPC

Linear Properties of the MPC Controller

This means the control law can be written

∆u(k) =
[

Ksr Ksu Ksx
] [

rT(k) uT(k− 1) x̂T(k)
]T

where
[

Ksr Ksu Ksx
]

is given by the first m rows of K̄s
This means that with

P(z) = Cy(zI − A)
−1B

H(z) = −KsxHy(z)

Hy(z) = (zI − A+ KCy)
−1K

Hu(z) = (zI − A+ KCy)
−1B

we get the following figure

Predictive Control Lecture 10 More MPC

Linear Properties of the MPC Controller

!
Ksr

Ksu

−Ksx

Ksx

P(z)

Hu(z)

Hy(z)

r(k) ∆u(k) u(k) y(k)

z−1 I

z
z−1 I

Equivalent controller

K (z) =
z

z− 1

[

I −
1

z− 1
Ksu −

z

z− 1
KsxHu(z)

]−1

Predictive Control Lecture 10 More MPC

MPC Tools
MPC controller calculate ,simulate and evaluate in
Matlab/Simulink
Good QP solver implementations with active set and interior
point methods
Main commands: MPCInit (output: data-structure "md"),
MPCSim, MPCController, MPCfrsp

Mode 0: State feedback.
Mode 1: State feedback with explicit integrators.
Mode 2: Observer-based output feedback.
Mode 3: Observer-based output feedback with explicit
integrators.
Mode 4: Observer-based output feedback with a
disturbance model that gives error free tracking.

Predictive Control Lecture 10 More MPC

MPC Tools

Figure: A Simulink model where the MPC controller is used to control
a nonlinear plant.

Predictive Control Lecture 10 More MPC

Example 1: Quad Tank (=Lab3)

Tank 2Tank 1

Tank 3 Tank 4replacements

u1 u2

γ 1 γ 2

1− γ 1 1− γ 2

Pump 1 Pump 2

Challenging MIMO process. Parameters γ 1,γ 2 control the flow
structure to the upper and lower tanks respectively
Non-minimum phase dynamics if e.g. γ 1 = γ 2 = 0.3

Predictive Control Lecture 10 More MPC

Nonlinear Dynamics

ẋ1 = −
a1
A2

√

2'x1 +
a3
A1

√

2'x3 +
γ 1k1
A1
u1

ẋ2 = −
a2
A2

√

2'x2 +
a4
A2

√

2'x4 +
γ 2k2
A2
u2

ẋ3 = −
a3
A3

√

2'x3 +
(1− γ 2)k2
A3

u2

ẋ4 = −
a4
A4

√

2'x4 +
(1− γ 1)k1
A4

u1

Linearise around wanted stationary levels.

Predictive Control Lecture 10 More MPC

Linearized Dynamics

With ∆x = x − x0, ∆u = u− u0 and ∆y = y− y0, we get

∆ ẋ =











− 1T1 0 A4
A1T3

0

0 − 1T2 0 A4
A2T4

0 0 − 1T3 0

0 0 0 − 1T4











∆x +













γ 1k1
A1

0

0 γ 2k2
A2

0
(1−γ 2)k2
A3

(1−γ 1)k1
A4

0













∆u

∆y =

[

kc 0 0 0

0 kc 0 0

]

∆x

where

Ti =
Ai
ai

√

2x0i
'
.

Predictive Control Lecture 10 More MPC

MPC Controller Parameters

Parameter Value
h sampling rate = 3 sec
Hp 30
Hw 1
Hu 10
Ip blocking factor 2
Iu blocking factor 2
Q diag(4, 1)
R diag(0.01, 0.01)
W diag(1, 1, 1, 1)/diag(1, 1, 1, 1, 1, 1)
V diag(0.01, 0.01)

Constraints: 0 ≤ x ≤ 19.8 cm on all tanks
0 ≤ u ≤ 10 V on both pumps

Predictive Control Lecture 10 More MPC

Typical Code

% Some initialisation of matrices left out here

Hp = 30; % Prediction horizon

Hu = 10; % Horizon for varying input signal

Hw = 1; % First penalty sample

zblk=2;

ublk=2;

Q = diag([4 1]);

R = 0.01*diag([1 1]);

W = diag([1 1 1 1]);

V = diag(0.01*ones(1,2));
md = MPCInit(Ad,Bd,Cyd,Czd,Dzd,Ccd,Dcd,Hp,Hw,zblk,Hu,ublk, ...

du_max,du_min,u_max,u_min,z_max, ...

z_min,Q,R,W,V,h,2,’qp_as’);

MPCfrsp(md,10);

[x,u,y,z,zp,up] = MPCSim(md,s,d);

% Plotting left out here

Predictive Control Lecture 10 More MPC

Results, simulation on linearized plant

0 200 400 600 800 1000 1200
2

4

6

8

10

12

h 3 [c
m

]

0 200 400 600 800 1000 1200
2

4

6

8

10

h 4 [c
m

]

0 200 400 600 800 1000 1200
6

8

10

12

14

16

h 1 [c
m

]

0 200 400 600 800 1000 1200
18

18.5

19

19.5

20

h 2 [c
m

]

0 200 400 600 800 1000 1200
0

1

2

3

4

u 1 [V
]

t [s]
0 200 400 600 800 1000 1200

2

4

6

8

u 2 [V
]

t [s]

Dashed: Kalman filter, no integral action
Solid: Kalman filter with disturbance observer

Predictive Control Lecture 10 More MPC

Results, simulation on nonlinear plant

0 200 400 600 800 1000 1200
2
4
6
8

10
12
14

h 3 [c
m

]

0 200 400 600 800 1000 1200
2

4

6

8

10

h 4 [c
m

]

0 200 400 600 800 1000 1200
6

8

10

12

14

16

h 1 [c
m

]

0 200 400 600 800 1000 1200
18

18.5

19

19.5

20

h 2 [c
m

]

0 200 400 600 800 1000 1200
0

1

2

3

4

u 1 [V
]

t [s]
0 200 400 600 800 1000 1200

2

4

6

8

u 2 [V
]

t [s]

Works well
Predictive Control Lecture 10 More MPC

Results, MPC linear behavior
Without the contraints, the linear controller has the following
amplitude curves. The plots show the singular values σ 1 and
σ 2 (the maximal and minimal gains) for the 2(2 system.

10−2 100
−30

−20

−10

0

10

Closed Loop

Frequency (rad/s)

Si
ng

ul
ar

 V
al

ue
s

(d
B)

10−4 10−2 100
−30

−20

−10

0

10

Sensitivity Function

Frequency (rad/s)

Si
ng

ul
ar

 V
al

ue
s

(d
B)

10−4 10−2 100
−30

−20

−10

0

10

Complimentary Sensitivity

Frequency (rad/s)

Si
ng

ul
ar

 V
al

ue
s

(d
B)

10−4 10−2 100
−20

−10

0

10

20

Control Sensitivity to Noise

Frequency (rad/s)

Si
ng

ul
ar

 V
al

ue
s

(d
B)

10−2 100
−30

−20

−10

0

10

Closed Loop

Frequency (rad/s)

Si
ng

ul
ar

 V
al

ue
s

(d
B)

10−4 10−2 100
−80

−60

−40

−20

0

20

Sensitivity Function

Frequency (rad/s)

Si
ng

ul
ar

 V
al

ue
s

(d
B)

10−4 10−2 100
−15

−10

−5

0

5

10

Complimentary Sensitivity

Frequency (rad/s)

Si
ng

ul
ar

 V
al

ue
s

(d
B)

10−4 10−2 100
−20

−10

0

10

20

30

Control Sensitivity to Noise

Frequency (rad/s)

Si
ng

ul
ar

 V
al

ue
s

(d
B)

Left: Without integral action Right: With integral action
Predictive Control Lecture 10 More MPC

Example 2: Helicopter Process

θ̈ e = (K f la/Je)(Vf + Vb)− T'/Je

θ̈ r = −(F'la/Jt) sinθ p

θ̈ p = (K f lh/Jp)(Vf − Vb)

Inputs: Voltages Vf , Vb to the propellers
Constraints: −0.5 ≤ θ e ≤ 0.6, −1 ≤ θ p ≤ 1

Predictive Control Lecture 10 More MPC

MPC Parameters
The process was linearized around the stationary point
(

θ 0e , θ 0r , θ 0p, V
0
f , V

0
b ,
)

=
(

0, 0, 0, T'/(2K f la), T'/(2K f la)
)

and then discretized using the sampling interval h = 0.2 s.

Parameter Value
Hp 30
Hw 1
Hu 10
Ip Every 2nd sample included in the opti-

mization problem.
Iu Every 2nd control increment assumed

to be zero
Q diag(1,1)
R diag(0.1,0.1)

All states assumed measurable. No integral action
Predictive Control Lecture 10 More MPC

Simulation - Results

0 10 20 30
−0.1

0

0.1

0.2

0.3

0.4

El
ev

at
io

n
[ra

d]

0 10 20 30
−1

−0.5

0

0.5

1

t [s]

Pi
tc

h
[ra

d]

0 10 20 30
−1

0

1

2

3

4

R
ot

at
io

n
[ra

d]

0 10 20 30
−2

−1

0

1

2

3

4

V f, V
b [V

]

t [s]

Simulation of the MPC controller applied to the nonlinear
helicopter plant.
Reference changes are tracked, pitch and voltages within limits

Predictive Control Lecture 10 More MPC

Project Suggestion: CVXGEN

Developed at Stanford
CVXGEN generates fast custom code for small,
QP-representable convex optimization problems, using an
online interface with no software installation. With minimal
effort, turn a mathematical problem description into a high
speed solver.
See http://cvxgen.com/

Predictive Control Lecture 10 More MPC

Introduction

! Industrial robots is basically a chain of
links and actuated joints.

! The control problem is to make the
end-effector follow a desired trajectory.

! Inconvenient to specify the trajectory in
joint space.

! Redundancy if the robot has extra
degrees of freedom or the task is not
fully constrained.

Andreas Stolt: Robot control using CVXGEN

Video

z

yx
o1

x

y

y

z

z
f2

f1

z
x

yo2

x

Task specification.
Andreas Stolt: Robot control using CVXGEN

Experimental conditions

! Position and velocity references are sent to the robot at
250 Hz.

! A solution is needed every 4 ms.

! A previous attempt to solve this problem was to use IPOPT
together with CasADi

! To long computation time introduced time delays (very
inconvenient when in contact!)

! In this project CVXGEN is considered.

Andreas Stolt: Robot control using CVXGEN

The problem considered

minimize (over q̇) f0(q̇)
subject to ẏ0d = Aq̇

q̇min ≤ q̇ ≤ q̇max

where one of the following objectives has been used

f0(q̇) = q̇
TM q̇ , f0(q̇) = "Mq̇"1 , f0(q̇) = "Mq̇"∞

Andreas Stolt: Robot control using CVXGEN

CVXGEN

Describe your small, quadratic program (QP)
representable problem with a simple, powerful language.
CVXGEN automatically creates library-free C code for a
custom, high-speed solver. This can be downloaded and
used immediately, and requires nothing but a C compiler.
CVXGEN also supplies a Matlab function that, with one
command, downloads and builds a custom Matlab mex
solver.
CVXGEN performs most transformations and optimizations
offline, to make online solution as fast as possible. Code
generation takes a few seconds or minutes, producing
solvers that work in microseconds or milliseconds.
Compared with generic code (CVX), solution times are
typically at least 20 times faster, with the smallest problems
showing speedup as large as 10,000x

Predictive Control Lecture 10 More MPC

CVXGEN: MPC Example

Predictive Control Lecture 10 More MPC

CVXGEN: MPC Example - Input Code

Predictive Control Lecture 10 More MPC

Robot control using CVXGEN

Andreas Stolt

Dept. of Automatic Control
LTH, Lund University

May 28th, 2011

Andreas Stolt: Robot control using CVXGEN

Experiments

! The generated solver communicates with the robot control
program via an ethernet connection.

! Unavoidable to introduce at least one sample delay.

! A way to avoid the delay is to calculate a Jacobian matrix
for the neighborhood of the solution (by perturbing ẏ0d and
solving the problem multiple times)

q̇= q̇opt + J ⋅

(

ẏ0d,actual − ẏ
0
d

)

Andreas Stolt: Robot control using CVXGEN

Results

! The mean computation time is around 0.16 ms (1.09 ms
worst case), and one sample delay is introduced. However,
no performace degradation has been observed.

! Using the approach with a Jacobian increases the
computation time to around 0.50 ms (2.03 ms worst case),
but this removes the delay.

! Some ”spikes” in the calculated Jacobian
! Due to non-smooth objective function?

Andreas Stolt: Robot control using CVXGEN

Results

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1
−

n
o

rm
 o

b
je

ct
iv

e

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

2
−

n
o

rm
 o

b
je

ct
iv

e

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

Time [s]

In
f−

n
o

rm
 o

b
je

ct
iv

e

2−norm−sol

1−norm−sol

2−norm−sol

1−norm−sol

2−norm−sol

1−norm−sol

Andreas Stolt: Robot control using CVXGEN

