
FRTN15 Predictive Control—Home Work 1

Signals and Systems

In this homework exercise we recapitulate theory for discrete time signals and

systems in assignments 1-3. Recursive Least square estimation (RLS) is trea-
ted in assignment 4. The exercise also gives the opportunity to practice Mat-

lab/Simulink.

E-mail your detailed and motivated solutions in pdf-format to

jerker@control.lth.se. Attach any Matlab code or Simulink models you

might have used.

1.

a. The observer canonical state space form of the continuous time system is

given by

dx

dt
=









0 1

0 0









x +









1

1









u (= Ax + Bu)

y=


 1 0


 x (= Cx).

Hence, with sampling period h one obtains

x(kh+ h) = Φx(kh) + Γu(kh)

y(kh) =


 1 0


 x(kh)

where

Φ = eAh = I + Ah+ A2h2/2+ ⋅ ⋅ ⋅ =

=









1 0

0 1









+









0 h

0 0









=









1 h

0 1









.

and

Γ =

∫ h

0









1+ s

1









ds =











h+ h2

2

h











.

The transfer function representation is given by

Hy,u(z) = C(zI − Φ)−1Γ =


 1 0












z− 1 −h

0 z− 1









−1










h+ h2

2

h











=

=
(z− 1)(h+ h2/2) + h2

(z− 1)2

b. s=tf(’s’);

Gc=(s+1)/s^2;

h=1;

Gd=c2d(G,h)

[Phi,Gamma,C,D]=tf2ss(Gd.num{1},Gd.den{1})

Transfer function:

1

0.105 z - 0.095

z^2 - 2 z + 1

If you are uncertain what a command does, type help followed by the com-

mand name in the Matlab prompt.

c. The sampled model behaves like its continuous time counterpart up to a hig-

her frequencies when sampled more rapidly (h smaller). However, decrea-
sing the sampling period leads to higher hardware demands and introduces

numerical sensitivity when implemented on finite word length machines.

2. Simple algebra yields

H1H2(U + H3Y) = Y [Y = HU =
H1H2

1− H1H2H3
U ,

i.e.

H(z) =
z+ 2

z2 + z+ 1
.

To simulate the step response you can use this code

h = 1;

z = tf(’z’,h);

H1 = z+2;

H2 = 1/(z^2+2*z+1);

H3=z/(z+2);

clsys = H1*H2/(1-H1*H2*H3); % positive feedback!

[sys] = minreal(clsys) % compute minimial realization (nicer)

[y,t] = step(sys,20)

plot(t,y)

3.

a. A discrete time LTI is stable iff the eigenvalues of Φ are strictly inside the

unit circle. The system is hence not asymptotically stable. (1 ∈ Sp(Φ).)

b. Let the linear state feedback be described by u = −Kx, i.e.

x(kh+ h) = (Φ − ΓK)x.

Inserting numerical values of K ,Γ and solving

Sp(Φ − ΓK) = {0, 0}

for K yields

K =




1
h2

1.5
h



 =


 100 15




In Matlab the acker command can be used to achieve this:

Phi=[1 h;0 1];

Gamma=[h^2/2 h]’;

K=acker(Phi,Gamma,[0 0])

2

c. Any initial state x(0) will be controlled to the origin in 2 time steps. This
looks good, might require very large control signals, especially if the sample

period is small. Think of moving a heavy robot arm to a wanted position in

h = 1 second compared to in h = 0.001 second. Dead-beat control can be
realistic in the former case and unrealistic in the latter.

4.

a. This can be done in many ways. One possibility is to use the simulink model

depicted below: The following settings have been applied:

rlsupdate

MATLAB
Function

White Noise

Signal
Generator

Scope

Discrete
Transfer Fcn

b

z−au

w

y

• ’Configuration Parameters’ from the ’Simulation menu’: ’Stop time’ un-

der ’Simulation time’ changed to ’300’, ’Solver’ under ’Solver options’

changed to ’Discrete (no continuous states)’

• ’Signal generator’: ’Wave form’ changed to ’square’, ’Frequency’ changed

to ’1/uP’

• ’MATLAB Function’: ’Matlab function’ changed to ’rlsupdate’

System parameters were defined as follows:

h = 1.0; % sample period [s]

a = 0.9;

b = 0.1;

uA = 1.0; % amplitude of input (square)

uP = 75*2; % period of input (square) [s]

The RLS update function was defined:

function thetaHat = rlsupdate(uy)

persistent P theta phi

if isempty(P)

P = eye(2);

theta = [0 0]’;

phi = [0 0]’;

end

u = uy(1);

y = uy(2);

P = P-(P*phi*phi’*P)/(1+phi’*P*phi);

e = y - phi’*theta;

theta = theta + P*phi*e;

3

thetaHat = theta;

phi = [y u]’;

return

To estimate the parameters correctly, we need a signal which excites the sy-

stem dynamics enough. For instance if u = 0 we will not get any information
about b, and if y= 0 we get no information about a either.

b. Augment it with exponential forgetting. The more rapidly varying parame-

ter one wants to track, the smaller λ one should use.

4

