
Institutionen för

REGLERTEKNIK

FRTN15 Predictive Control

Final Exam October 17, 2011, 8am ­ 1pm

General Instructions

This is an open book exam. You may use any book you want, but no notes,

exercises, exams, or solution manuals are allowed. Solutions and answers to the

problems should be well motivated. The exam consists of 7 problems. The credit

for each problem is indicated in the problem. The total number of credits is 25

points. Preliminary grade limits:

Grade 3: 12 – 16 points

Grade 4: 17 – 21 points

Grade 5: 22 – 25 points

Results

The results of the exam will be posted at the latest October 24 on the notice

board on the first floor of the M-building.
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1.

a. Consider the nonlinear model:

y(t) + a1y(t− 1) = b1u(t− 1) + b2u(t− 1)y(t− 1)

Find a linear-in-parameters regression model for estimation of the parame-

ters a1, b1 and b2. (1 p)

b. It is desired to use this regression model to perform online identification of

the parameters. In addition, it is known that the parameters may be slowly

time-varying. Write down an appropriate algorithm for this estimation task,

and explain its operation. (1 p)

c. An indirect adaptive controller is to be designed, using the estimation met-

hod from above. Design a control law, incorporating the reference signal

uc(t), such that the closed-loop system has the transfer function:

Y(z) =
b0

z+ a0
Uc(z)

where 1 > a0 > −1. The controller may be nonlinear. (1 p)

Solution

a. The output is given by:

y(t) = −a1y(t− 1) + b1u(t− 1) + b2u(t− 1)y(t− 1)

The regression model must be linear in the parameters, a condition satisfied

by choosing:

θ = [ a1 b1 b2 ]
T

φT(t) = [−y(t) u(t) u(t)y(t) ]

The output is thus given by:

y(t) = φT(t− 1)θ

b. The estimation of time-varying parameters can be implemented as a Kal-

man filter:

θ̂ k = θ̂ k−1 + Kkǫk

Kk =
Pk−1φk

R2 + φT
k
Pk−1φk

ǫk = yk − φTk θ̂ k−1

Pk = Pk−1 −
Pk−1φkφ

T
k Pk−1

R2 + φT
k
Pk−1φk

+ R1

As an alternative, we may choose the Recursive Least Squares algorithm,

with exponential forgetting factor.

2



c. The output is given by:

y(t) = −a1y(t− 1) + b1u(t− 1) + b2u(t− 1)y(t− 1)

The desired response is given by:

y(t) = −a0y(t− 1) + b0uc(t− 1)

Equating these gives:

−a0y(t− 1) + b0uc(t− 1) = −a1y(t− 1) + b1u(t− 1) + b2u(t− 1)y(t− 1)

u(t) =
(a1 − a0)y(t) + b0uc(t)

b1 + b2y(t)

2. A self-tuning regulator using an RLS estimation algorithm has been desig-

ned for a second order system with unknown parameters. During testing,

simulations have been carried out for different values of the forgetting factor

λ and the measurement noise variance σ 2. Figure 1 shows the parameter
estimates during a process variation test, where the unknown system’s dy-

namics are changes at t = 50. The test was carried out for four different
conditions:

1. λ = 0.8, σ 2 = 0.001

2. λ = 0.9, σ 2 = 0.001

3. λ = 0.9, σ 2 = 0.0001

4. λ = 0.95, σ 2 = 0.001

Unfortunately, the engineer responsible for the tests was not very metho-

dical and forgot to write down the conditions corresponding to each of the

results.

a. Assist the engineer by determining which of the cases 1–4 above correspond

to the plots A–D in Figure 1. Clearly state your reasoning. (2 p)

b. The engineer is not pleased with the noise performance of the system with

lower values of the forgetting factor. Is it possible to achieve better noise

rejection by adjusting the value of the initial covariance matrix P0? Explain

your answer. (1 p)

Solution

a. The problem can be solved by considering two of the properties of the for-

getting factor. Firstly, a larger forgetting factor gives slower convergence

after parameter changes. Secondly, a large forgetting factor is useful for re-

ducing the effects of noise. To begin with, we see that the largest forgetting

factor is 0.95, in case 4. The slowest parameter convergence occurs in plot

D, so we conclude that case 4 corresponds to plot D. The smallest forgetting
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Figur 1 Parameter plots for Problem 2

factor occurs in case 1, where a high noise influence is present. Therefore

it is reasonable to associate this case with the plot which exhibits the most

noise, namely plot C. This leaves two cases, 2 and 3, which both involve the

same forgetting factor value but different noise variance values. Examining

the noise presence in the remaining plots A and B leads us to the conclu-

sion that case 2 corresponds to plot A and case 3 correspnds to plot B. The

answer is therefore:

A–2

B–3

C–1

D–4

b. No, it is not possible. The initial covariance matrix only has an effect on the

initial behaviour of the system; thereafter it plays no part in noise rejection.

In order to reduce the effect of noise, regression filters could be introduced.

3. Consider the process

yk =
1

z− au
uk +

z

z− ae
ek

where the noise sequence {ek} is independent white noise and uk is the
control signal.

a. Design a controller that minimizes E(y2k). (2 p)
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b. Assume that the parameter au is known and that ae is unknown. Derive a

regression model for identification of the parameter ae. (1 p)

c. Design a controller for the process when au is known and ae is slowly time-

varying with values in a large interval. Motivate your choice of controller

structure. (2 p)

Solution

a. The model can be written as A(z)yk = B(z)uk + C(z)ek where

A(z) = (z− au)(z− ae), B(z) = z− ae, C(z) = z(z− au).

Although A and C have common factors, we have:

C(z)

A(z)
= 1+

(z− au)ae
A(z)

= F(z) +
G(z)

A(z)

the minimum variance control law is

uk = −
G(z)

B(z)F(z)
yk = −

(z− au)ae
z− ae

yk.

b. Introducing

ȳk = yk −
1

z− au
uk

we find that

ȳk+1 = ȳkae + ek+1.

A regression model is

ȳk+1 = ȳkae.

c. Since ae is time-varying with values in a large interval it seems reasonable

to use an adaptive controller, e.g. an indirect self-tuning regulator. The iden-

tification algorithm must have some kind of forgetting or resetting since ae
is time-varying. The obtained estimates are used to calculate the controller

parameters.

4.

a. Briefly explain the principle of Model Predictive Control. Use a sketch or a

diagram to illustrate the terms prediction horizon and control horizon.

(1 p)

b. What computational problems can arise if the plant is operated near constraints

on the outputs, and how can the MPC formulation be modified to limit the-

se problems? (1 p)

Solution
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Figur 2 Illustration of the MPC principle for Problem 4.

a. The receding horizon principle is illustrated in Figure 2. Given the current

state measurement (or estimate), a sequence of future control inputs are
determined by minimizing a cost function penalizing predicted inputs and

outputs of the system. The first input is implemented, and the optimization

is repeated at the next sample.

b. Problems may arise if an output constraint is violated, or the current state

of the system doesn’t allow a feasible solution to be found. This may be

caused by e.g. disturbances or estimation errors when state measurements

are not available.

One way of limiting these issues is to use ’soft’ constraints on outputs and

states. For instance, a constraint on the form xmin ≤ x(k) ≤ xmax can be
replaced by xmin − ǫ(V x

k
)min ≤ x(k) ≤ xmax + ǫ(V x

k
)max where ǫ is a slack

variable and (V x
k
)min and (V

x
k
)max are relaxation vectors. An extra term

may then be added to the cost function that penalizes ǫ2. This allows the

constraints to be violated but at a high cost, which promotes constraint

following.

5. The following equations describe the problem of Iterative Learning Control

(ILC):

yk(t) = Gc(q)r(t) + Gc(q)uk(t)

ek(t) = r(t) − yk(t)

uk(t) = Q(q)[uk−1(t) + L(q)ek−1(t)]

where Gc(q) is the closed-loop transfer function of the system and q is the
forward time shift operator.

a. Explain the principle of ILC and a draw a block diagram of the system.

(1 p)

b. Give two examples of applications where ILC would be a suitable control

strategy. (1 p)
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c. Assume that Q(q) = 1 and that

GC(q) =
1

q− 0.9
, L(q) = (α q+ 1)(q− 0.9)

Determine how to choose α in order to assure ILC stability and error con-
vergence. (1 p)

d. It is desired that the error dynamics of the ILC algorithm should be given

by:

ek(t) = H(q)ek−1(t)

Assuming a model of the closed loop system Ĝc is available, and that Q(q) =
1, explain how to design the filter L(q) in order to achieve the desired error
dynamics. (1 p)

Solution

a. ILC is suitable for systems that repeatedly follow the same reference tra-

jectory r(t) over a finite time interval [0, t f ]. The strategy is based on col-
lection of a data set and filtering operations upon the data. Non-causal

filtering may be used since the filtering is performed offline. Denote the

output and input of repetition k by yk(t) and uk(t). The control signal for
repetition k+1 is then calculated by iterating from uk(t) with a filter L(z).

uk(t)

uk+1(t)
r(t)ILC

G(q)
yk(t)

ek(t)
+

Figur 3 Block diagram of ILC algorithm for Problem 5

b. As stated in a, the control problem should consist of repeting a task many

times. Two examples of this is

• Trajectory optimization for fluid-filled containers on an assembly line

• A robot arm manufacturing machine parts

c. We obtain the following recursive expression for the tracking error

ek(t) = [(1− Q)(1− GC)]yd(t) + [Q(1− L ⋅ GC)]ek−1(t)

and convergence will be achieved if

p 1− L(eiωh) ⋅ GC(e
iωh) p<p Q−1(eiωh) p

where ωh ∈ [−π ,π ] and h is the sampling time—i.e., the Nyquist curve of
L(z)GC(z) should be contained in a region in the complex plane given by a
circle with radius one centered at z = 1. Simplification gives

p 1−α eiωh − 1 p< 1, ωh ∈ [−π ,π ]

from which the range of α ∈ [−1, 1] is determined.
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d. Since a model of the closed loop system is available, model-based ILC may

be used. By choosing:

L(q) = Ĝ−1c (1− H(q))

we get the error dynamics:

ek(t) = [(1− Q)(1− GC)]yd(t) + [Q(1− L ⋅ GC)]ek−1(t)

6. Consider the stable, linear system

ẋ = Ax + Bu

y= Cx

where

x =









x1

x2








, A =









0 1

−1 −1








, B =









0

k








, C =



 1 0




k is an unknown parameter. The control law is given by u = θuc, where
θ = θ (t) is the controller parameter and uc is the reference signal. The
system can be written as y= kG(s)u, that is, k is the feedforward gain for
the system, where

G(s) =
1

s2 + s+ 1

a. We want to determine the control parameter θ , such that the output follows
the reference model ym = k0G(s)uc. Introduce the state error x̃ = x − xm,
and the output error e = y− ym. Let the desired θ be θ0 = k0/k. Then the
state-space equations for the the system from (θ − θ0)uc to e are given by

˙̃x = Ax̃ + B(θ − θ0)uc

e = Cx̃

Use Lyapunov theory to derive a control law which guarantees that x̃ goes

to zero. Motivate your choice of the controller. What extra knowledge do we

need? (2 p)

Hint: Use the Lyapunov function

V =
1

2

(

x̃TPx̃ +
1

γ
(θ − θ0)

T(θ − θ0)

)

b. We can use the output error e instead of the state error x̃ in the update

law for the parameter θ and guarantee that e goes to zero if G(s) is SPR.
Assume that G(s) is SPR, and derive such an update law. (2 p)

c. Is the transfer function G(s) SPR? Also check whether

G1(s) =
1

s+ 1

is SPR.

(1 p)
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Solution

a. Since the system
˙̃x = Ax̃ + B(θ − θ0)uc

is asymptotically stable, there exist positive definite matrices P and Q such

that

ATP+ PA = −Q.

Now choose Q = I, and let P be a symmetric matrix, i.e.

P =









p1 p2

p2 p3









The elements of P are obtained by solving the following linear system of

equations:
















0 −2 0

1 −1 −1

0 2 −2

































p1

p2

p3

















=

















−1

0

−1

















.

Solving this system gives p1 = 1.5, p2 = 0.5 and p3 = 1.
Now we can choose the Lyapunov candidate

V =
1

2

(

x̃TPx̃ +
1

γ
(θ − θ0)

T(θ − θ0)

)

Its derivative is given by

dV

dt
= −
1

2
x̃TQx̃ +

1

γ

(

dθ

dt
+ γ ΨTPx̃

)

,

where Ψ = Buc = kB̄uc, and

B̄ =









0

1








.

Choosing the update law

dθ

dt
= −γ ΨTPx̃

= −γ ucB
TPx̃

= −γ kuc B̄
TPx̃

= −γ ′uc B̄
TPx̃

gives that
dV

dt
= −
1

2
x̃TQx̃

which is negative definite, and hence the state error x̃ will go to zero as t

goes to infinity. Notice that since γ ′ = γ k, we need to know the sign of k.
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b. If G(s) (with realization A, B̄, and C) is SPR, then there is – according
to the Kalman-Yakubovich lemma – a Q such that the solution P to the

Lyapunov equation fullfills

C = B̄TP.

If we use this equality in the above update law we obtain

dθ

dt
= −γ ′uc B̄

TPx̃ = −γ ′uce.

c. We see that

Re(G(iω )) = Re
1

(iω )2 + iω + 1
= Re

1

−ω 2 + iω + 1

= Re
1−ω 2 − iω

(1−ω 2 + iω )(1−ω 2 − iω )
= Re

1−ω 2 − iω

(1−ω 2)2 +ω 2

=
1−ω 2

(1−ω 2)2 +ω 2

and is clearly negative when pω p is greater than 1, which does not satisfy
condition (iii) for positive realness .

G1(s) is SPR, since

(i) G1(s) has no poles in the RHP

(ii) G1(s) has no poles or zeros on the imaginary axis

(iii) Re G1(iω ) = 1/(1+ω 2) ≥ 0 for all ω

7. Determine the Kalman filter and derive the steady-state estimation cova-

riance and filter gain for the system

xk+1 = 0.4xk + vk

yk = xk + ek

where vk and ek are zero-mean, uncorrelated white noise processes with

variance 1. Compare the steady-state estimation covariance to that of xk
using the direct measurement as an estimate of x̄k = yk to predict xk.
Consider the time-invariant case only! (3 p)

Solution

The Kalman filter equations are

x̂k+1pk = 0.4x̂k + Kk(yk − x̂k)

Kk =
0.4Pk

1+ Pk

Pk+1 = 0.16Pk + 1−
0.16P2k
1+ Pk

, Pk = E(x̃k x̃k)

If we denote the steady-state covariance by P∞, the following holds

P∞ = 0.16P∞ + 1−
0.16P2∞
1+ P∞

→ P2∞ − 0.16P∞ − 1 = 0
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Solving for P∞ and taking the positive solution gives P∞ ( 2.81. The corre-
sponding steady-state filter gain is

K∞ =
0.4P∞

1+ P∞
( 0.29

With the estimator x̄k = yk, the prediction is x̄k+1 = 0.4yk. The estimation
variance becomes

E{(xk+1 − x̂k+1)
2} = E{(xk+1 − 0.4(xk + ek))

2} = E{(0.4xk + vk − 0.4(xk + ek))
2}

= E{(vk − 0.4ek)
2} = E{v2k} + 0.16E{e

2
k}
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