
Predictive Control - Exercise Session 4
Adaptive Control: Self Tuning Regulators and Model

Reference Adaptive Systems

1. Indirect Self Tuning Regulator: Consider the system

G(s) = G1(s)G2(s)

where

G1(s) =
a

s+ b

G2(s) =
c

s+ d

Here a and b are unknown parameters and c and d are known. This could

for example represent a system where the plant is known but where certain

sensor dynamics are unknown. The system is to be controlled in such a way

that the closed loop system is given by:

Gm(s) =
ω 2

s2 + 2ωζ s+ω 2

a. Construct a discrete time indirect self tuning regulator without zero can-

cellation.

b. Construct a discrete time indirect self tuning regulator with zero cancella-

tion.

Solution

We begin by sampling both the plant and the desired closed loop:

H(z) =
b0z+ b1

z2 + a1z+ a2

Hm(z) =
bm0z+ bm1

z2 + am1z+ am2

Since the sampled plant’s discrete time parameters may depend on both the

known and unkown continuous time parameters, we will proceed as though

all parameters were unkown.

Since we are designing an indirect STR, we require a linear regression

model for the plant’s parameters. This is given by:

θ = ( bo b1 a1 a2 )
T

φ(t) = (u(t− 1) u(t− 2) −y(t− 1) −y(t− 2) )

a. First we will design the controller without cancelling the process zero (i.e.
B+ = 1). Using the causality condition degAc ≥ 2degA− 1 we find that Ac
must have at least degree 3. Since we know that the degree of A is 2, the

degree of R must therefore be at least 1. The minimum degree design is ac-

hieved by choosing the smallest possible degrees of the design polynomials,
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so we get degAc = 3 and degR = degS = 1. The Diophantine equation for
this problem is:

(z2 + a1z+ a2)(z+ r1) + (b0z+ b1)(s0z+ s1) = (z
2 + am1z+ am2)(z+ ao1)

Identification of coefficients of equal powers of z gives:

z2 : a1 + r1 + b0s0 = am1 + ao1

z1 : a2 + a1r1 + b1s0 + b0s1 = am1ao1 + am2

z0 : a2r1 + b1s1 = am2ao1

The solution to these linear equations is:

r1 =
b21n1 − b0b1n2 + ao1am2b

2
0

b20a2 − a1b0b1 + b
2
1

s0 =
n1 − r1
b0

s1 =
b0n2 − b1n1 − r1(a1b0 − b1)

b20

where:

n1 = am1 + ao1 − a1

n2 = am1ao1 + am2 − a2

b. The controller will now be designed using zero cancellation ( B+ = z +
b1/b0). The orders of the polynomials are chosen to be the same as above,
but now a factor of B+ may be cancelled from the Diophantine equation. In

this case the Diophantine equation gives:

(z2 + a1z+ a2)1+ b0(s0z+ s1) = z
2 + am1z+ am2

Identification of coefficients of equal powers of z gives:

z1 : a1 + b0s0 = am1 s0 =
am1 − a1
b0

z0 : a2 + b0s1 = am2 s1 =
am2 − a2
b0

The controller is thus given by:

R(z) = z+ b1/b0

S(z) = s0z+ s1

T(z) = t0z where t0 =
1+ am1 + am2

b0

To examine the behaviour of the systems we have designed, we may use

simulations. Simulation of the system without zero cancellation is shown

in Figure 1. Simulation results for the system desinged with cancellation

are shown in Figure 2. It can be seen that the control signal in the design

2011-10-13 19:15 2



0 10 20 30 40 50
-2

-1

0

1

2  uc y

0 10 20 30 40 50

-10

0

10

 u

Figur 1 Simulation of Problem 1a. Process output and control signal are shown for the

indirect self-tuning regulator when the process zero is not cancelled.

with cancellation exhibits ‘ringing’. This is the result of cancelling a poorly

damped process zero. In this case the process is given by:

H(z) =
0.0187(z+ 0.936)

(z− 1)(z− 0.819)

which has a zero in z = −0.936.

2. Direct Self Tuning Regulator: Using the same plant and specification

as in Problem 1, design:

a. A direct self tuning regulator without zero cancellation.

b. A direct self tuning regulator with zero cancellation.

Solution

To obtain a direct self-tuning regulator we start with the Diophantine de-

sign equation:

AR + BS = AmAoB
+

Let the design equation operate on y:

B+AmAoy = ARy+ BSy = BRu+ BSy

y = R

(
B−

AoAm
u

)

︸ ︷︷ ︸

u f

+S

(
B−

AoAm
y

)

︸ ︷︷ ︸

yf
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Figur 2 Simulation of Problem 1b. Process output and control signal are shown for the

indirect self-tuning regulator when the process zero is cancelled.

Here, Am is the desired characteristic polynomial and Ao is the observer

polynomial. We now have a regression model in which the R and S polyno-

mials are parameters and the filtered input and output signals u f and yf
are regressors. Thus we may estimate R and S.

The T polynomial is given by:

T =
toAoBm

B−

where to is chosen to give the correct steady state gain.

a. We will begin by designing without cancellation. We then have B+ = 1 and
B− = b0q+ b1. From the analysis is of the indirect STR we know that a
first order observer is required, i.e. A0 = q+ ao1. We have as before:

y = R

(
B−

AoAm
u

)

︸ ︷︷ ︸

u f

+S

(
B−

AoAm
y

)

︸ ︷︷ ︸

yf

(1)

Since B− is not known we cannot calculate u f and y f . One possibility is to

rewrite Equation 1 as:

y = RB−
︸ ︷︷ ︸

R′

(
1

AoAm
u

)

+ SB−
︸ ︷︷ ︸

S′

(
1

AoAm
y

)

and to estimate R′ and S′ as second order polynomials and to cancel the

common factor B− from the estimated polynomials. This is difficult because

there will not be an exact cancellation. Another possibility is to use some

estimate of B−. A third possibility is to try to estimate B−R and B−S as a

bilinear problem.
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b. If the polynomial B is canceled we have B+ = z+ b1/b0, B
− = b0. From

the analysis of the indirect STR we know that no observer is needed in this

case and that the controller has the structure deg R = deg S = 1. Hence:

y(t) = R

(
bo

Am
u(t)

)

+ S

(
bo

Am
y(t)

)

Since bo is not known we include it in the polynomial R and S and estimate

it. The polynomial R then is not monic. We have:

y(t) = (r0q+ r1)

(
1

Am
u(t)

)

+ (s0q+ s1)

(
1

Am
y(t)

)

To obtain a direct STR we thus estimate:

θ = ( r0 r1 s0 s1 )
T

by RLS. The case r0 = 0 must be taken care of separately. Furthermore T
has the form T(q) = t0q where:

BT

AR + BS
=

Btoq

B+bo
︸ ︷︷ ︸

B

Am
=
toq

Am

To get unit steady state gain choose:

to = Am(1)

In Figures 3–6 we show simulation when the model in Equation 1 is used

with:

B− = 1

B− = q

B− =
q+ 0.4

1.4

B− =
q− 0.4

0.6

The simulation results for the case when the process zero is cancelled are

shown in Figure 7.

Again we see that cancellation of the process zero gives a ‘ringing’ control

signal. However, it is also noted that the choice of B− (which is unknown)
is critical for performance in the case where no zero is cancelled.

3. Model Reference Adaptive Control using MIT Rule: In this problem

we consider a linear process with the transfer function kG(s), where G(s)
is known and k is an unknown parameter. Find a feedforward controller

that gives a system with the transfer function Gm(s) = k0G(s) where k0 is
a given constant. Use the controller structure

u = θuc

where u is the control signal and uc the command signal. Use the MIT

rule to update the parameter θ , and draw a block diagram of the resulting
adaptive system.
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Figur 3 Simulation in Problem 2a. Process output and control signal are shown for the

direct self-tuning regulator when the process zero is not canceled and when B− = 1.

Solution

With the controller structure

u = θuc

the transfer function from command signal to the output becomes θ kG(s).
This transfer function is equal to Gm(s) if the parameter θ is chosen as

θ =
k0

k

We will now use the MIT-rule to obtain a method for adjusting the parame-

ter θ when k is not known. The error is

e = y− ym = kG(p)θuc − k0G(p)uc

where uc is the command signal, ym the model output, y the process output,

θ the adjustable parameter, and p = d/dt the differential operator. The
sensitivity derivative is given by

�e

�θ
= kG(p)uc =

k

k0
ym

The MIT rule then gives the following adaptation law

dθ

dt
= −γ ′ k

k0
yme = −γ yme (2)

where γ = γ ′k/k0 has been introduced instead of γ ′. Notice that in order

to have the correct sign of γ it is necessary to know the sign of k. Equation
2 gives the law for adjusting the parameter. A block diagram of the system

is shown in Figure 8.
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Figur 4 Simulation in Problem 2a. Process output and control signal are shown for the

direct self-tuning regulator when the process zero is not canceled and when B− = q.
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Figur 5 Simulation in Problem 2a. Process output and control signal are shown for

the direct self-tuning regulator when the process zero is not canceled and when B− =
(q+ 0.4)/1.4.
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Figur 6 Simulation in Problem 2a. Process output and control signal are shown for

the direct self-tuning regulator when the process zero is not canceled and when B− =
(q− 0.4)/0.6.
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Figur 7 Simulation in Problem 2b. Process output and control signal are shown for the

direct self-tuning regulator when the process zero is canceled.
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Figur 8 Block diagram of an MRAS for adjustment of a feedforward gain based on the

MIT rule.
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