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FRTN15 Lecture 12—Stability

Outline

◮ Lyapunov Stability

◮ Strictly Positive Realness (SPR)

◮ Kalman-Yakubovich-Popov Lemma

◮ Passivity

◮ Gain Adaptation

◮ Stability of MRAC

A. M. Lyapunov (1857–1918)

Master thesis “On the stability of ellipsoidal forms of equilibrium

of rotating fluids,” St. Petersburg University, 1884.

Doctoral thesis “The general problem of the stability of motion,”

1892.

Main idea

Lyapunov formalized the idea:

If the total energy is dissipated, then the system must be stable.

Main benefit: By looking at how an energy-like function V (a so

called Lyapunov function) changes over time, we might

conclude that a system is stable or asymptotically stable

without solving the nonlinear differential equation.

Main question: How to find a Lyapunov function?

Examples

Start with a Lyapunov candidate V to measure e.g.,

◮ "size"1 of state and/or output error,

◮ "size" of deviation from true parameters,

◮ energy difference from desired equilibrium,

◮ weighted combination of above

◮ ...

Example of common choice in adaptive control

V =
1

2

(
e2 + γ aã

2 + γ bb̃
2
)

(here weighted sum of output error and parameter errors)

1Often a magnitude measure or (squared) norm like pep22, ...

Analysis: Check if V is decreasing with time

◮ Continuous time:
dV

dt
< 0

◮ Discrete time: V (k+ 1) − V (k) < 0

Synthesis: Choose e.g. control law and/or parameter update

law to satisfy V̇ ≤ 0

dV

dt
= eė+ γ aã ˙̃a+ γ bb̃

˙̃
b =

= x̃(−ax̃ − ãx̂ + b̃u) + γ aã ˙̃a+ γ bb̃
˙̃
b = ...

If a is constant and ã = a− â then ˙̃a = − ˙̂a.

Choose update law
dâ

dt
in a "good way" to influence

dV

dt
.

(more on this later...)

A Motivating Example

x

m mẍ = − bẋpẋp︸ ︷︷ ︸
damping

− k0x − k1x
3

︸ ︷︷ ︸
spring

b, k0, k1 > 0

Total energy = kinetic + pot. energy: V = mv2

2
+

∫ x
0
Fsprin� ds [

V (x, ẋ) = mẋ2/2+ k0x
2/2+ k1x

4/4 > 0, V (0, 0) = 0

d

dt
V (x, ẋ) = mẍẋ + k0xẋ + k1x

3 ẋ = {plug in systemdynamics 2}

= −bpẋp3 < 0, for ẋ ,= 0

What does this mean?

2Also referred to evaluate “alongsystem trajectories”.

Stability Definitions

An equilibrium point x = 0 of ẋ = f (x) is

locally stable, if for every R > 0 there exists r > 0, such that

qx(0)q < r [ qx(t)q < R, t ≥ 0

locally asymptotically stable, if locally stable and

qx(0)q < r [ lim
t→∞
x(t) = 0

globally asymptotically stable, if asymptotically stable for all

x(0) ∈ Rn.

Lyapunov Theorem for Local Stability

Theorem Let ẋ = f (x), f (0) = 0, and 0 ∈ Ω ⊂ Rn. Assume
that V : Ω → R is a C1 function. If

(1) V (0) = 0

(2) V (x) > 0, for all x ∈ Ω, x ,= 0

(3) d
dt
V (x) ≤ 0 along all trajectories of the system in Ω

then x = 0 is locally stable. Furthermore, if also

(4) d
dt
V (x) < 0 for all x ∈ Ω, x ,= 0

then x = 0 is locally asymptotically stable.
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Lyapunov Functions (( Energy Functions)

A function V that fulfills (1)–(3) is called a Lyapunov function.

Condition (3) means that V is non-increasing along all

trajectories in Ω:

V̇ (x) =
d

dt
V (x) =

�V

�x
⋅ ẋ =

�V

�x
⋅ f (x) ≤ 0

where �V
�x =

h
�V
�x1

�V
�x2

... �V
�xn

i

level sets where V = const.

x1

x2

V

Conservation and Dissipation

Conservation of energy: V̇(x) = �V
�x f (x) = 0, i.e. the vector

field f (x) is everywhere orthogonal to the normal �V�x to the
level surface V (x) = c.

Example: Total energy of a lossless mechanical system or total

fluid in a closed system.

Dissipation of energy: V̇ (x) = �V
�x f (x) ≤ 0, i.e. the vector field

f (x) and the normal �V�x to the level surface V (x) = c make an
obtuse angle (Sw. “trubbig vinkel”).

Example: Total energy of a mechanical system with damping or

total fluid in a system that leaks.

Geometric interpretation

x(t)

f (x)
V (x)=constant

�V
�x

Vector field points into sublevel sets

Trajectories can only go to lower values of V (x)

Boundedness:

For an trajectory x(t)

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ )dτ ≤ V (x(0))

which means that the whole trajectory lies in the set

{z p V (z) ≤ V (x(0))}

For stability it is thus important that the sublevel sets

{z p V (z) ≤ c)} are locally bounded.

Lyapunov Theorem for Global Asymptotic Stability

Theorem Let ẋ = f (x) and f (0) = 0.
If there exists a C

1 function V : Rn → R such that

(1) V (0) = 0

(2) V (x) > 0, for all x ,= 0

(3) V̇(x) < 0 for all x ,= 0

(4) V (x) → ∞ as qxq → ∞

then x = 0 is globally asymptotically stable.

Radial Unboundedness is Necessary

If the condition V (x) → ∞ as qxq → ∞ is not fulfilled, then
global stability cannot be guaranteed.

Example Assume V (x) = x21/(1+ x
2
1) + x

2
2 is a Lyapunov

function for a system. Can have qxq → ∞ even if V̇(x) < 0.

Contour plot V (x) = C:
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Example:

ẋ1 =
−6x1

(1+ x21)
2
+ 2x2

ẋ2 =
−2(x1 + x2)

(1+ x21)
2

Example- Lyapunov fcn for linear system

ẋ = Ax =

[
−1 4

0 −3

] [
x1
x2

]
(1)

Eigenvalues of A : {−1, −3} [ (global) asymptotic stability.

Find a quadratic Lyapunov function

V (x) = xTPx =
[
x1 x2

] [
p11 p12
p12 p22

] [
x1
x2

]
, P = PT > 0

for the system (1).

Solve the Lyapunov equation ATP + PA = −Q. Take any
Q = QT > 0 , say Q = I2$2.

Example cont’d

ATP+ PA = −I

[
−1 0

4 −3

] [
p11 p12
p12 p22

]
+

[
p11 p12
p12 p22

] [
−1 4

0 −3

]
=

[
−2p11 −4p12 + 4p11

−4p12 + 4p11 8p12 − 6p22

]
=

[
−1 0

0 −1

] (2)

Solving for p11, p12 and p22 gives

2p11 = −1

−4p12 + 4p11 = 0

8p12 − 6p22 = −1

=[

[
p11 p12
p12 p22

]
=

[
1/2 1/2
1/2 5/6

]
> 0
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x1 ’ = − x1 + 4 x2
x2 ’ = − 3 x2     
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Phase plot showing that

V = 1
2
(x21 + x

2
2) =

[
x1 x2

] [
0.5 0

0 0.5

] [
x1
x2

]
does NOT work.

x1 ’ = − x1 + 4 x2
x2 ’ = − 3 x2     
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Phase plot with level curves xTPx = constant for P found in
example.

Somewhat Stronger Assumptions

Theorem: Let ẋ = f (x) and f (0) = 0. If there exists a C1

function V : Rn → R such that

(1) V (0) = 0

(2) V (x) > 0 for all x ,= 0

(3) V̇(x) ≤ −αV (x) for all x

(4) The sublevel sets {xpV (x) ≤ c} are bounded for all c ≥ 0

then x = 0 is globally exponentially stable.

Proof Idea

Assume x(t) ,= 0 ( otherwise we have x(τ ) = 0 for all τ > t).
Then

V̇ (x)

V (x)
≤ −α

Integrating from 0 to t gives

log V (x(t)) − log V (x(0) ≤ −α t [ V (x(t)) ≤ e−α tV (x(0))

Hence, V (x(t)) → 0, t→∞.

Using the properties of V it follows that x(t) → 0, t→∞.

Preliminaries

Definition (Strictly Positive Realness (SPR))

A proper rational transfer function matrix H(s) is positive real if

— All elements of H(s) are analytic for Re[s] > 0;

— Any pure imaginary pole of any element of H(s) is a
simple pole and the associated residue matrix of H(s) is
positive definite Hermitian;

— For all real ω for which iω is not a pole of any element of
H(s), the matrix H(iω ) + HT(−iω ) is positive definite and
strictly positive real (SPR) if H(s− ε ) is positive real for
some ε > 0.

[Kalman-Yakubovich-Popov Lemma

Lemma (Kalman-Yakubovich-Popov [?, ?, ?])

Let G0(s) = C(sI − A)
−1B + D be a m $m transfer function

where A is Hurwitzian, (A, B) is controllable and (A,C) is
observable. Then, G0(s) is strictly positive real if and only if
there exist a positive symmetric matrix P, matrices W1,W2 and

a positive constant ǫ such that

PA+ ATP = −W1W
T
1 − ǫP,

PB − CT = −W1W
T
2 , D + DT = W2W

T
2

�

Lyapunov revisited

Original idea: “Energy is decreasing”

ẋ = f (x), x(0) = x0

V (x(T)) − V (x(0)) ≤ 0

(+some other conditions on V)

New idea: “Increase in stored energy ≤ added energy”

ẋ = f (x,u), x(0) = x0

y = h(x)

V (x(T)) − V (x(0)) ≤

∫ T

0

ϕ(y,u)︸ ︷︷ ︸
external power

dt (3)

Passivity

Consider a system

ẋ = f (x,u), x ∈ R
n,u ∈ R

p,

y = h(x,u), y ∈ R
p

where f : Rn $ R
p→ R

n is locally Lipschitz, h : Rn $R
p→ R

p

is continuous with f (0, 0) = 0, h(0, 0) = 0.

The system is said to be passive if there exists a continuously

differentiable positive semidefinite function V (x)—the storage
function—such that

uT y ≥ V̇ =
�V

�x
f (x,u),∀(x,u) ∈ R

n $R
p
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Passivity

The passive system is said to be

◮ lossless if uT y = V̇ ;

◮ strictly passive if uT y≥ V̇ +ϕ(x) > 0 for some positive
definite function ϕ ;

◮ input strictly passive if uT y ≥ V̇ + uTψ (u) > 0 and
uTψ (u) > 0, ∀u ,= 0;

◮ output strictly passive if uT y≥ V̇ + yTρ(y) > 0 and
yTρ(y) > 0 ∀y ,= 0;

if the inequality holds for all (x,u).

Dissipativity

Definition (Dissipativity)

A dynamical system is

ẋ = f (x,u), x ∈ R
n,u ∈ R

p,

y = h(x,u), y ∈ R
p

is said to be dissipative with respect to a supply rate w(u, y) if
there exists a positive definite storage function V (x) such that
V̇ ≤ w

Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: “Energy is decreasing”

V̇ ≤ 0

Passivity idea: “Increase in stored energy ≤ Added energy”

V̇ ≤ uT y

Gain Adaptation

u

−

+

y

ym

e

uc

Π

Π

Σ

Model

Object

kmG(s)

−
γ

s

kG(s)

Figure: Gain adaptation, u = θuc: How to change θ when k is
unknown to get θk = km?

Gain Adaptation

Consider the gain adaptation problem of Fig. 1

u = θuc

where the controlled system would be like the desired model if

the gain parameter was

θ = θ ∗ =
km

k

The output error is

e = y− ym = G(s)(kθ − km)u
c

with uc as command signal, ym the reference model output, y

system output, θ the gain parameter.

dθ

dt
= −γ yme MIT

dθ

dt
= −γ uce SPR

Lyapunov Stability

Assume that the transfer function G(s) has a state-space
realization

ẋ = Ax + Bu

y = Cx, Y(s) = G(s)U(s)

and

ẋm = Axm + B(kmu
c)

y = Cxm, Ym(s) = G(s)kmU
c(s)

The error model

xe = x − xm

e = y− ym, E(s) = G(s)(kθ − km)U
c(s)

Lyapunov Stability (cont’d)

The error model

xe = x − xm

e = y− ym, E(s) = G(s)(kθ − km)U
c(s)

with the error dynamics

ẋe = Axe + B(kθ − km)u
c = Axe + B ku

c
︸︷︷︸

φ

θ̃

e = Cxe

Introduce the Lyapunov function candidate

V (xe, θ̃) =
1

2
xTe Pxe +

µ

2
θ̃Tθ̃ , P = PT > 0, µ > 0

Lyapunov Stability (cont’d)

Lyapunov function candidate

V (xe, θ̃) =
1

2
xTe Pxe +

µ

2
θ̃Tθ̃ , P = PT > 0, µ > 0

with the derivative

dV (xe, θ̃ )

dt
=
1

2
xTe (PA+ A

TP)xe + x
T
e PB(kθ − km)u

c + µθ̃T
dθ̃

dt

=
1

2
xTe (PA+ A

TP)xe + θ̃T(BTPxkuc + µ
dθ̃

dt
)
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Lyapunov Stability (cont’d)

Under the conditions of the Kalman-Yakubovich-Popov (KYP)

Lemma, we have for an SPR transfer function G(s)

PA+ ATP = −Q, Q = QT > 0, P = PT > 0

C = BTP

then the adaptation law

dθ̂

dt
= −γ BTPxe︸ ︷︷ ︸

e

kuc︸︷︷︸
φ

= −γ φ e, γ = µk

Lyapunov Stability (cont’d)

will render the Lyapunov function negative definite with respect

to xe, that is

dV (xe, θ̃ )

dt
=
1

2
xTe (PA+ A

TP)xe

= −
1

2
xTe Qxe < 0, qxeq ,= 0

dθ̃

dt
=
dθ̂

dt
= −γ φ e

Passivity Analysis

Passivity relationships require that

V (x(0)) +

∫ t

0

uT(s)y(s)ds ≥ V (x(t))

where V (x(t)) is a storage function.

An interpretation of the inequality (4) is a signal energy balance

Stored Energy ≤ Original Stored Energy + Supplied Energy

Passivity Analysis (cont’d)

For the upper block with input θ̃ , output e and storage function

Vx(xe) =
1

2
xePxe

we have (time arguments partly omitted)

uT y−
�Vx
�x

dxe

dt
= uT y− xTe P(Axe + Bu)

= uTCxe − x
T
e P(Axe + Bu)

= −
1

2
xTe (PA + A

TP)xe + u
T (C − BTP)xe

=
1

2
xTe Qxe

Passivity Analysis (cont’d)

...so that

< upe > =

∫ t

0

u(s)y(s)ds =
1

2

∫ t

0

xTe (s)Qxe(s)ds+

∫ t

0

�Vx
�x

dxe

dt
dt

=
1

2

∫ t

0

xTe (s)Qxe(s)ds+ Vx(xe(t)) − V (xe(0))

> Vx(xe(t)) − Vx(xe(0))

which satisfies the strict passivity conditions for a strictly

positive real transfer function G(s).

Passivity Analysis (cont’d)

θ̃
−γ ⋅

1

s

φ φ

ΠΠ G(s)
Strictly

Passive

Passive

e

Figure: Passivity analysis of gain adaptation

Passivity Analysis (cont’d)

Similarly, for φ = uc

< θ̃φ peφ > =
1

2

∫ t

0

xTe (s)Qxe(s)ds+ Vx(xe(t)) − Vx(xe(0))

Furthermore, for the adaptation block with input eφ and output
−θ̃ we have

< eφ p − θ̃ > =

∫ t

0

e(s)φ(s)(−θ̃ (s))ds

Integration by parts gives

< eφ p − θ̃ > =

∫ t

0

e(s)φ(s)(−θ̃ (s))ds

=
1

γ

∫ t

0

θ̃T(s)θ̃ (s)ds+
1

γ

∫ t

0

θ̃T(s)
dθ̃ (s)

ds
ds

Passivity Analysis (cont’d)

Introduce the storage function

Vθ (θ̃ ) =
1

2γ
θ̃Tθ̃

Passivity analysis verifies that

< eφ p − θ̃ > =

∫ t

0

e(s)φ(s)(−θ̃ (s))ds

=
1

γ

∫ t

0

θ̃T(s)θ̃ (s)ds+ Vθ (θ̃ (t)) − Vθ (θ̃ (0))

≥ Vθ (θ̃ (t)) − Vθ (θ̃ (0)), γ > 0
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Passivity Analysis (cont’d)

A storage function for the passive feedback-interconnected

system is

V (ξ ) = Vx(xe) + Vθ (θ̃ ), ξ =

[
xe

θ̃

]

with state vector ξ .

Passivity Analysis (cont’d)

A modified PI-type adaptation law may be suggested so that

θ̃ = −γ 1φ(t)e(t) − γ 2

∫ t

0

φ(s)e(s)ds

For passivity analysis, we introduce the shorter notation

θ̃ = θ̃1 + θ̃2, where θ̃1 = −γ 1φ e, θ̃2 = −γ 2

∫ t

0

φ(s)e(s)ds

Passivity Analysis (cont’d)

The input-output energy is

< eφ p − θ̃ > =

∫ t

0

e(s)φ(s)(−θ̃ (s))ds

=

∫ t

0

e(s)φ(s)(−θ̃1(s) − θ̃2(s))ds

=
1

γ 1

∫ t

0

θ̃ 21(s)ds+

∫ t

0

e(s)φ(s)θ̃2ds

=
1

γ 1

∫ t

0

θ̃ 21(s)ds+
1

γ 2

∫ t

0

θ̃ 22ds+
1

2γ 2
θ̃ 22(t) −

1

2γ 2
θ̃ 22(0)

>
1

2γ 2
θ̃ 22(t) −

1

2γ 2
θ̃ 22(0)

Stability of MRAC

Assume that the control object can be described by the state

equation

ẋ = Ax + Bu =

=

[
−a1 −a2 ⋅ ⋅ ⋅ −an

I(n−1)$(n−1) 0(n−1)$1

]
x

+

[
1

0(n−1)$1

]
u

and that

u = −θT x

Stability of MRAC (cont’d)

In the case of a known A it is possible to choose a suitable θ by
means of model matching so that

A− BθT = Am

for some dynamics matrix Am representing the prescribed

system behavior.

This gives the closed-loop system

ẋ = Ax + Bu

=

[
−a1 − θ1 −a2 − θ2 ⋅ ⋅ ⋅ −an − θn

I(n−1)$(n−1) 0(n−1)$1

]
x = Amx

Stability of MRAC (cont’d)

Replace by the adaptive control law

˙̂
θ = S−1xBTPx, S = ST > 0

u = −θ̂T x

where P solves the Lyapunov equation

PAm + A
T
mP = −Q

The system behavior under adaptive feedback control is

ẋ = (A− BθT)x − BxTθ̃ = Amx − Bx
Tθ̃

Stability of MRAC (cont’d)

Lyapunov function candidate

V (x, θ̃) =
1

2
xTPx +

1

2
θ̃TSθ̃ , S = ST > 0

with the derivative

dV

dt
=
1

2
ẋTPx +

1

2
xTPẋ +

1

2

˙̃
θ
T

Sθ̃ +
1

2
θ̃TS

˙̃
θ

=
1

2
xT(ATmP + PAm)x − x

TPBxTθ̃ + θ̃TS
˙̃
θ

If θ is constant then
˙̂
θ =

˙̃
θ and

dV

dt
= −
1

2
xTQx < 0, qxq ,= 0

Stability of MRAC (cont’d)

Consider adaptive stabilization of the system



ẋ1
ẋ2
ẋ3


 =



−a1 −a2 −a3
1 0 0

0 1 0






x1
x2
x3


+



b1
0

0


u

so that it behaves like the model

ẋ =



ẋ1
ẋ2
ẋ3


 =



−3 −3 −1
1 0 0

0 1 0






x1
x2
x3


 = Amx
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Stability of MRAC (cont’d)

Application of control algorithm for Q = S = I3$3 and P solving
the Lyapunov equation PAm + AmP = −Q gives

P =



0.4375 0.8125 0.5000

0.8125 3.2500 1.9375

0.5000 1.9375 2.3125


 > 0

A simulation of this adaptive algorithm for a1 = a2 = a3 = −1
and b1 = 1 is shown in Fig. 3 in which typical transients of
control and adaptation are exhibited.

Stability of MRAC (cont’d)

Time [s]

-20
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0 5 10 15

Input u
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0
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6

0 5 10 15

States x1, x2, x3

Time [s]

0

2

4

6

8

0 5 10 15

Estimated parameters

Time [s]

Lyapunov function V

Time [s]

0

5

10

15

0 5 10 15

Figure: Example of Model reference adaptive control

References Adaptive Noise Cancellation by Lyapunov Design

u b
s+a

bb
s+ba

x

x̂

x̃+
−

ẋ + ax = bu

˙̂x + âx̂ = b̂u

Introduce x̃ = x − x̂, ã = a− â, b̃ = b− b̂.

Want to design adaptation law so that x̃→ 0

Let us try the Lyapunov function

V =
1

2
(x̃2 + γ aã

2 + γ bb̃
2)

V̇ = x̃ ˙̃x + γ aã ˙̃a+ γ bb̃
˙̃
b =

= x̃(−ax̃ − ãx̂ + b̃u) + γ aã ˙̃a+ γ bb̃
˙̃
b = −ax̃2

where the last equality follows if we choose

˙̃a = − ˙̂a =
1

γ a
x̃ x̂

˙̃
b = −

˙̂
b = −

1

γ b
x̃u

Invariant set: x̃ = 0.

This proves that x̃→ 0.

(The parameters ã and b̃ do not necessarily converge: u " 0.)

Demonstration if time permits

Results
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Estimation of parameters starts at t=10 s.
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