
Institutionen för

REGLERTEKNIK

FRTN15 Predictive Control

Final Exam October 25, 2008, 8­13

General Instructions

This is an open book exam. You may use any book you want. However, no previous

exam sheets or solution manuals are allowed. The exam consists of 6 problems to

be solved. Your solutions and answers to the problems should be well motivated.

The credit for each problem is indicated in the problem. The total number of

credits is 25 points. Preliminary grade limits are:

Grade 3: 12 points

Grade 4: 17 points

Grade 5: 22 points

Results

The results of the exam will be posted at the latest November 1 on the notice

board on the first floor of the M-building and they will also be available on the

course home page.

Do you accept publication of your grading result on our local web

page? (Godkänner du publicering av resultatet på vår lokala hemsida?)
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1. The following system is to be controlled using Model Predictive Control.
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where y(k) is available for measurement. The controller should fulfill y(k) =
r(k), where r(k) is a reference signal, and respect the constraints

xmin ≤ x2(k) ≤ xmax

umin ≤ u(k) ≤ umax

a. Determine the additional output signals z and zc which correspond to con-

trolled and constrained outputs respectively, i.e. determine Cz and Cc so

that the system can be written on the following form

x(k+ 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

z(k) = Czx(k)

zc(k) = Ccx(k)

(1 p)

b. For the numerical values umin = xmin = −2 and umax = xmax = 2, and given
that x(k) = (0 1)T and u(k − 1) = 0.5, what restrictions do we have on
∆u(k) = u(k) − u(k− 1)? (2 p)

c. What computational problems can arise if the plant is operated near the

constraint on x2 and noise disturbances are affecting the states? How can

the MPC problem be modified to limit these problems? (1 p)

d. Assume that a constant disturbance is acting on the process input. How can

the state space model be extended to include this? (1 p)

Solution

a. We have a constraint on x2, i.e. zc(k) = x2(k), Cc = (0 1). We have a set-point
for x1 which gives z(k) = x1(k) Cz = (1 0).

b. From the constraint −2 ≤ u(k) ≤ 2 and the relation ∆u(k) = u(k)−u(k−1)
we get −2+ 0.5 = −2.5 ≤ ∆u(k) ≤ 1.5 = 2− 0.5.

The state space-model gives x2(k+1) = x2(k)+u(k) which can be expanded
to x2(k+1) = x2(k)+u(k−1)+∆u(k) = 1+0.5+∆u(k). From the constraint
−2 ≤ x2 ≤ 2 we get −2− 1.5 = −3.5 ≤ x2(k) ≤ 0.5 = 2− 1.5.

The lower bound on ∆u(k) is given by the constraint on u(k) and the upper
bound is given by the constraint on x2(k), we get

−2.5 ≤ ∆u(k) ≤ 0.5
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c. If a disturbance is acting on the system the constraint on x2 might be vio-

lated, which in turn may cause problems for the solver. One way of limiting

this problem is to soften the constraint on x2. This can be done by replacing

xmin ≤ x2 ≤ xmax with

xmin − ǫ(V xk )min ≤ x2(k) ≤ xmax + ǫ(V xk )max

where ǫ is the slack variable and (V xk )min and (V
x
k )max are relaxation vectors

and adding an extra term ρǫǫ
2 to the cost function. The parameter ρǫ then

determines the amount of softening.

d. With a constant disturbance d on the input the system can be written as

x(k+ 1) = Ax(k) + B(u(k) + d(k))

y(k) = Cx(k)

Introducing the extended state vector xe(k) = (x(k) d(k))
T we can write
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
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2. We want to estimate the parameters a and b using input-output data for a

system with transfer function H(z) given by

H(z) =
b

z+ a

The parameters are likely to be time-varying, so Recursive Least Squares

(RLS) estimation with forgetting is employed.

a. State the equations for the RLS-algorithm with forgetting and explain its

operation. Also, write the model on regressor form. (2 p)

b. What problems might arise when a small value of λ is used? (1 p)

c. Figure 1 shows the results when using the four configurations i-iv of λ and
κ , where P0 = κ ⋅ I.

i : λ = 0.998, κ = 103

ii : λ = 1, κ = 103

iii : λ = 0.998, κ = 1

iv : λ = 1, κ = 10−2

The initial estimates were 0.5 for both parameters. The correct values are

a = 0.1 and b = 0.3. At t = 50, a changes to 0.2. Determine which result
A-D that corresponds to which configuration i-iv. Motivate your answer.

(2 p)

d. Assume that some input-output data are available off-line. Explain how this

can be used to improve the initial behaviour of the on-line algorithm. (1 p)
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Solution

a. The input-output data are connected via

y(k+ 1) + ay(k) = bu(k)

where y(k) is the output and u(k) is the input. To write the model on
regressor form introduce

φ(k) =


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
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



The regressor form is then y(k+ 1) = φT(k)θ .

The recursive algorithm with forgetting is given by

θ̂ k = θ̂ k−1 + Pkφ kǫk

ǫk = yk − φTk θ̂ k−1

Pk =
1

λ

(

Pk−1 −
Pk−1φ kφ

T
k Pk−1

λ + φTk Pk−1φ k

)

The first equation is the estimate update. The second equation is the predic-

tion error using θ̂ k−1. The third equation updates the covariance estimate
Pk. When 0 < λ < 1 the algorithm emphasizes fitting of recent data and
reduces the influence of old data.

b. One drawback with using a small λ is that the noise sensitivity increases.
Another problem is that the Pk-matrix may increase with k if Pk−1φ k is
small, sometimes referred to as “P-matrix explosion”.
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Figur 1 Responses to the parameter choices i-iv in Problem 2.
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c. Subplots C and D have the fastest initial transients, which indicates that

they correspond to a large value of κ . Subplot C has faster adaption to the
new parameter values than D, which indicates a lower value of λ . Subplot
A has the slowest initial transient, which indicates a small value of κ while
subplot B has a medium fast initial transient and also displays adaption to

the new parameters similar to that in subplot C. Taking this together we

get

A − iv

B − iii

C − i

D − ii

d. The off-line data can be used to obtain initial estimates of θ0 and P0 to
reduce initial transients.

3.

a. Explain the basic principles in Model Reference Adaptive Control (MRAC).
What is the difference between direct and indirect MRAC? What design

choices are needed? What information about the plant is needed? (2 p)

b. Consider the system H(q) given by

H(q) =
b0q+ b1

q2 + a1q+ a2

where b0 and b1 are such that the process zero is stable. Show how a direct

MRAC on the form

R(q)u(t) = T(q)uc(t) − S(q)y(t)

is obtained so that the closed-loop transfer function from uc to y is given by

Hm(q) =
bm1q+ bm2

q2 + am1q+ am2

What are the orders of the polynomials R(q), S(q), and T(q)? Assume that
the process zero is cancelled. (2 p)

Solution

a. The objective of Model Reference Control is to design a controller such that

the closed loop dynamics of controller and plant match a specified desired

model.

If the controller is on the form

R(z)u(k) = −S(z)y(k) + T(z)uc(k)

where y(k) is the plant output, u(k) is the control signal, and uc(k) is the
command signal we want to choose the polynomials R(z), S(z), and T(z) so
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that a system with transfer function G(z) has specified closed-loop dynamics
Gm(z).

When G(z) is unknown, the controller must be made adaptive. In the direct
approach, the polynomials are determined directly from input-output data

(see 3. b.). In the case of indirectMRAC, the plant parameters are estimated
and the polynomials are then calculated.

The design choices include:

• Choosing a reference model Gm

• Choosing whether to cancel any process zeros or not

• Choosing an observer polynomial

Typically, we need to know the order of the plant, but not the specific pa-

rameters.

b. We introduce polynomials A, B, Am, Bm according to

B = b0q+b1, A = q2+a1q+a2, Bm = bm1q+bm2, Am = q
2+a1mq+a2m

so that we have Ay(t) = Bu(t) and Amym(t) = Buc(t).

Next we factor B as B = B+B− where B+ is subject to cancellation.

B+ = q+
b1

b0
, B− = b0

We begin by letting the Diophantine equation AR + BS = AmAoB
+ act on

the output y(t).
ARy(t) + BSy(t) = AmAoB

+y(t)

Inserting Ay(t) = Bu(t) we have

BRu(t) + BSy(t) = AmAoB
+y(t)

Cancelling B+ we get

b0Ru(t) + b0Sy(t) = AmAoy(t)

This can be re-arranged as a regression model

y(t) = R

(

b0

AmAo
u(t)

)

+ S

(

b0

AmAo
y(t)

)

If b0 is known, we can estimate R and S directly using the expressions in

parantheses as regressors and choose T = (BmAo)/b0.

When b0 is unknown, one possibility is to rewrite the regression model so

that the products R′ = b0R and S
′ = b0S are estimated, and then identify

b0 as the common factor. We could also identify b0 separately.

4. Consider the following system

xk+1 = axk + vk

yk = xk + ek
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where v and e are white-noise processes with zero mean and the covariances

E{vjvk} = r1δ jk

E{vj ek} = 0

E{ej ek} = r2δ jk

a. Determine the Kalman filter for the system. (1 p)

b. What are the steady-state filter gain and the estimation covariance? (1 p)

c. Determine the filter gain and estimation covariance in steady-state when

r1 >> r2. Comment on the result. (1 p)

Solution

a. The Kalman filter equations are given in Table 7.1 in the text-book. For the

system in question they reduce to

Pk+1pk = a2Pkpk−1 + r1 −
a2P2

kpk−1

r2 + Pkpk−1

Kk =
aPkpk−1

r2 + Pkpk−1

x̂k+1pk = ax̂kpk−1 + Buk + Kk(xk − x̂kpk−1)

b. In steady-state the covariance matrix P∞ and the filter gain K∞ are given

by the equations

P∞ = a2P∞ + r1 −
a2P2∞
r2 + P∞

K∞ =
aP∞

r2 + P∞

c. When r1 >> r2 we can approximate the equation for P∞ by

P∞ ( a
2P∞ + r1 −

a2P2∞
P∞

= r1

which yields

K∞ (
ar1

r1
= a

This means that the observer poles are placed in the origin, we have obtai-

ned a dead-beat observer which trusts the measurements much more than

the model output.

5.

a. Calculate a one-step-ahead optimal predictor for the system

yk+1 = 0.8yk − 0.5yk−1 +wk+1 + 0.4wk

where w is a stochastic process with zero mean and variance E{wkw
T
j } =

σ 2wδ kj . Also determine the prediction covariance. (2 p)
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b. Determine a one-step-ahead minimum-variance controller for the system

yk+1 = 0.8yk − 0.5yk−1 + uk + 0.6uk−1 +wk+1 + 0.4wk

Also determine the output variance under closed-loop minimum variance

control. (2 p)

Solution

a. We write the system as

yk =
C(z−1)

A(z−1)
wk

where

A(z−1) = 1− 0.8z−1 + 0.5z−2, C(z1−) = 1+ 0.4z−1

From the diophantine equation

C(z−1) = A(z−1)F(z−1) + z−1G(z−1)

we see that we can write

yk+1 = F(z
−1)wk+1 +

G(z−1)

A(z−1)
wk

As wk+1 is unknown at time k the optimal prediction of yk+1 is

ŷk+1 =
G(z−1)

A(z−1)
wk =

G(z−1)

C(z−1)
yk

where the last equality is found by solving the system equation for wk.

With F(z−1) of order d − 1 where d = 1 is the delay of the system and
G(z−1) of order n− 1 where n is the order of the system, gives

F = f0

G = �0 + �1z
−1

The coefficients are found by comparing powers of z−1 in the diophantine

equation, yielding f0 = 1, �0 = 1.2, �1 = −0.5. The prediction covariance is
E{(ŷk+1 − yk+1)2} = f

2
0σ 2w = σ 2w.

b. Using the same notation and diophantine equation as in a., and introducing

B(z−1) = 1+ 0.6z−1 we obtain

yk+1 = F(z
−1)wk+1 +

B(z−1)

A(z−1)
uk +

G(z−1)

A(z−1)
wk

Solving the system equation for wk and rearranging yields

yk+1 = F(z
−1)wk+1 +

B(z−1)F(z−1)

C(z−1)
uk +

G(z−1)

C(z−1)
yk

The minimum variance controller is obtained by choosing uk so that the

last two terms cancel out.

uk = −
G(z−1)

B(z−1)F(z−1)
yk

The output variance is the same as the prediction covariance in a.
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6. An Iterative Learning Control (ILC) strategy for the system

yk(t) = G(q)uk(t)

is given by

ek(t) = r(t) − yk(t)

uk+1(t) = uk(t) + L(q)ek(t)

a. Explain the principle of ILC and a draw a block diagram of the system.

(1 p)

b. Give two examples of practical situations where ILC would be a suitable

control strategy. (1 p)

c. Figure 2 shows the nyquist plot for the three choices of L(q):

L(q) = q+ 0.5 (dotted)

L(q) = q+ 0.7 (dashed)

L(q) = q+ 0.85 (solid)

For which choice of L(q) will the control error converge? (1 p)
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Figur 2 Nyquist plots for G(q)L(q) in Problem 6.

Solution

a. ILC is suitable for systems that repeatedly follow the same reference tra-

jectory r(t) over a finite time interval [0, t f ]. Denote the output and input
of repetition k by yk(t) and uk(t). The control signal for repetition k+ 1 is
then calculated by iterating from uk(t) with a filter L(q).
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uk(t)

uk+1(t)
r(t)ILC

G(q)
yk(t)

ek(t)
+

Figur 3 Block diagram of ILC algorithm for Problem 6.

b. As stated in a, the control problem should consist of repeting a task many

times. Two examples of this is

• Trajectory optimization for fluid-filled containers on an assembly line

• A robot arm manufacturing machine parts

c. A sufficient condition for stability is that

sup
ωh∈[−π ,π ]

ppIp − G(z)L(z)pppz=eiωh < 1

i.e. the Nyquist curve of G(z)L(z) should be contained in a circle with radius
one centered at z = 1. We see that only L(q) = q+0.85 fulfills this condition.
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