
Predictive Control

Laboratory Experiment 2

Direct Adaptive Control Structures

Department of Automatic Control

Lund Institute of Technology

1. Introduction

The purpose of this laboratory exercise is to design different types of direct
adaptive controllers. In the first part of the laboratory, a DC-servo will
be controlled. In particular, the case of direct self tuning controllers and
iterative learning controllers (ILC) will be considered. In the last part of
the laboratory, an adaptive minimum variance controller will be designed
to cope with time varying disturbances.

You will find 7 exercises, labeled Preparations, that are supposed to be
solved before the laboratory session. Some of them are simulation exercises
that need files from the course homepage at:

http://www.control.lth.se/course/FRTN15/

2. Control of the DC-servo

The Process We will design controllers for a process that consists of a
DC-servo with a flywheel that will be controlled to follow a desired angular
position.

The process is shown in Figure 1. It is a DC-servo that should be controlled
to follow a desired angular position. The process interface is customized

ø 0.8� ø 0.8

ø 0‚95

øּ0,3

ø 0,8

ø 0,8

ø 0,8

ø 0,8

ø 0‚8

ø 0,8

øּ0,65

ø 0,8� ø 0,8

ø 0,95

øּ0,3

ø 0.8� ø 0.8

ø 0‚8

ø 0‚95

øּ0,3

øּ0,65

øּ0,65ø 0,5 ø 0,5�ø 0,5 øּ0,65

øּ0,65

ø 0‚8

1
s

k
Js +ּdΣ

ωω

gnd

FRICTION
COMPENSATION

ON

POWER� SAT. OVL.�RESET POS.RESET

LTH ReglerteknikּR/B 88

θ
x0,1

x0,2

x0,1

x0,2

-1-1-1

Current
magnitude

4V/A

Ext. in

Moment

Ext. Int. +

LTH Reglerteknik RB 88

Int

OffOff

Reference

Ref out

Figure 1 Front panel of the DC-servo.

1

to fit the AD- and DA-converters on the computer. All signals are in the
interval ± 10 V. The position y is given by

Jÿ = −dẏ+ ku+ v (1)

where u is the control signal and v is an optional disturbance that can
affect the system. The disturbance is activated by a switch on the process
front panel. Process variations on the damping d and the moment of inertia
J may be introduced using the potentiometers on the front panel together
with local feedback.

The nominal continuous time transfer function from u to y is

G(s) =
11.2

s(s+ 0.12)
(2)

The corresponding pulse transfer operator is on the form

H(q) =
B(q)

A(q)
=

b1q+ b2
q2 + a1q+ a2

(3)

(Hint: Use Matlab to obtain the numerical values in the pulse transfer
function.)

The closed-loop characteristic polynomials Am(q) and Ao(q) are conve-
niently defined as the discrete-time counterparts to the continuous time
polynomials

Amc(s) = s2 + 2ζmωms+ω 2m (4)

Aoc(s) = s+ω 0 (5)

We will use the sampling interval Ts = 0.1 s here. With fixed relative
damping, e.g, ζm = 0.7, the closed looped system is parameterized by ωm
and ω o. As a nominal design, we choose ωm = 5 and ω o = 7.

The Controller The structure of the used controllers is fixed to that of
PID-type controllers, where the control signal is given by the expression:

u(t) = K

(

e(t) +
1
Ti

∫

e(t)dt+ Td
de(t)
dt

)

,

where e(t) is the control error.

One way to cope with parameter uncertainties in the process is by using
adaptive algorithms in the control structure. In this laboratory exercise we
will examine two ways of adapting a PID-type control structure. First, a
direct adaptive control strategy is used for online adaptation of the control
parameters. This is the so called Self-TUning PID controller (STUPID).
Second, an ILC scheme is used in order to obtain improved tracking per-
formance with a fixed parameter PID.

2

2.1 Fixed PID control

At first, try to control the angular position using a fixed PID controller. You
can test the robustness of your tuning by changing the process parameters.

Preparation 1 Discretize a PID controller using finite difference approx-
imation (use backward difference for the derivative and forward difference
for the integral part) and determine the resulting pulse transfer function.
What are the orders of the numerator and denominator?
Hint:

Forward difference: s (
q− 1
h
, Backward difference: s (

q− 1
qh

Exercise 1 Using the simulated process, tune a PID controller with an
acceptable control performance (damped response and bandwidth of ap-
proximately 5 rad/s). What are the parameters K , Ti, Td? Test the ro-
bustness of your tuning by changing the process parameters during the
simulation.

Exercise 2 When you have found a controller that works well in sim-
ulations, you can try it on the real process. Vary the process parameters
(e.g., increase the moment of inertia of the plant) using connections on the
process panel. How does the control performance change?

2.2 Direct Adaptive Control

This section describes a method for online adaptation of the parameters for
a PID-type controller. The approach taken is that of a Direct Self Tuning
Regulator.

With a PID controller one can make an arbitrary pole placement for a
system of order no greater than 2. This assumption holds for the DC-servo
process considered.

Use the design method for a Direct Self Tuning Regulator proposed in the
text book. By imposing that the controller should contain integral action
and considering a plant of second order, one obtains a PID-type structure.

3

This is the so called Self-TUning PID (STUPID). Following the steps in the
text-book, the underlying Diophantine equation is:

AR + BS = B+AoAm, with B = B+B− = B+b0, R = R′B+︸ ︷︷ ︸

R+

(q− 1)
︸ ︷︷ ︸

∆

The degree conditions are:

deg Ao = deg A− deg B+ − 1+ 1 = deg A− deg B+ = d0 = 1,

deg R = deg S = 2→ R′ = 1

Thus,

AoAm = AR
′∆ + B−S py

AoAmy = ∆Bu+ b0Sy

Using backward-shift operator:

AoAmy = ∆Bu+ b0Sy pq
−(n+d0)

A∗
oA

∗
mq
d0y = ∆∗B∗u+ b0S

∗y

In order to fulfill the steady-state condition imposed by the Diophantine
equation, S is parameterized as:

b0S
∗ = Am(1)A0(1) + ∆∗S′∗

Preparation 2 Derive the linear regression model for the Direct Self-
Tuning PID and the resulting control signal (use feedforward term also).

Preparation 3 Since the controller output is limited by a saturation
nonlinearity, the integrator could give rise to the wind-up phenomena. In-
troduce the anti-windup measure with the anti-windup observer polyno-
mial Aow. Specify the order of the anti-windup polynomial.

Exercise 3 Simulate the Self-Tuning PID and find a suitable parameter
tuning. How does the control signal behave? Can you explain? Change the
process parameters during simulation and observe the behavior of your
controller.

4

Q−filter

Closed loop
control system

 L−filter
{uk+1(t)}

T
t=0

{uk(t)}
T
t=0

{ek(t)}
T
t=0

{yd(t)}
T
t=0 {yk(t)}

T
t=0

Tc(q)

Ld(q) Qd(q)

Figure 2 ILC setup: The update of the correction signal sequence {uk+1} is made
in batch after each run.

Exercise 4 The relative degree of the process d0, enters as a design
parameter in our control system. Investigate the effect of this parameter
in the simulated model.

Exercise 5 Test your best controller setup on the real process. Try to
vary the process parameters (e.g. vary the moment of inertia of the plant).
How does the controller behave? How much variation in the parameters
can you handle? Investigate the effect of the forgetting factor λ in your
controller.

2.3 Iterative Learning Control — ILC

In this part we will examine another method of improving the reference
following for repeated tasks, called Iterative Learning Control (ILC). Er-
rors in the reference following can have many causes; unmodeled dynamics,
poorly tuned control parameters, different kinds of disturbances like load
disturbances, measurement noise, friction etc. If the system response to a
certain reference signal will be roughly the same whenever it is repeated
(i.e., a time-invariant response) ILC can be used to decrease the control
error. However, if stochastic disturbances dominate or if the dynamics vary
from one run to another, ILC might not help.

The method is in short: Apply the desired reference signal sequence {yd}
to the system and record the whole error sequence {ek} = {yd}−{yk}, see
Fig. 2.

Based on the error sequence, modify the control signal {uk+1} to improve
the response for the next iteration. Repeat this until the deviation from
the reference is acceptable (i.e., low enough).

5

Note that the ILC-correction {uk} is pre-determined and applied in “open-
loop” during one run, but is updated from feedback information between the
runs (batch). Compare the different time-scales between ordinary feedback,
adaptive parameter updates, and Iterative Learning Control.

We have seen different kinds of update laws for Iterative Learning Control
in the lectures. Here we will try with a version of the so called heuristic
approach.

{uk+1} = Qd({uk} + Ld{ek})

where {ek} is the sequence of errors from previous run, {uk+1} is the
sequence of new ILC-corrections, Qd and Ld are linear discrete time filters.

Note: We need not to do causal filtering as the filtering is made “off-line”
between two runs, when we have access to the whole sequences of data.

Preparation 4 Study the Matlab script ILC_setup.m and make sure you
know the difference between causal and acausal filtering. Try to filter a
sequence [1 : 10] with the filter G1 = z3 using noncausalfilter.m and
with the filter G2 = 1/z3 using filter.m, respectively.

You can modify the filters Qd and Ld by changing in the matlab-script
ILC_setup.m and also have a look at the ILC-update in run_ILC_iteration.m.

Exercise 6 Try different filters in simulation (see Figure 6). Change the
constant load disturbance to see if the method will be able to compensate
for it.

Exercise 7 Run the controller with ILC on the real process. How will the
system perform? Can you mention any reason for why the method starts
to degenerate after a number of iterations?

To run experiments on the DC-servo, type

>>ILC_setup % contains filter definitions

>>ILC_pidDCreal

and thereafter perform a number of ILC-iterations by double-clicking on
the yellow sub-system “ILC-iteration”.

6

3. Minimum-variance Control

The purpose of this section is to illustrate some properties of a direct adap-
tive controller on a control problem with disturbances whose character-
istics are changing. We will compare its performance with non-adaptive
controllers in simulations.

The Problem A common reason for using an adaptive controller is to
adapt to changing disturbance patterns. A block diagram of the system we
will investigate is shown in Figure 3.

u

e

1
1− adz−1 + z−2

v

z−1

z−1 − 1

y

Figure 3 A blockdiagram of the process. The signal e is white noise and u is the
control signal.

The process dynamics is thus very simple, an integrator with known gain.
The sampling period is specified to 1 sec. The disturbance is narrow band
noise. The difficulty is that the frequency of the disturbance can be quite
close to the the bandwidth of the controller. With a traditional controller
it is then difficult to obtain a sufficiently high gain at the frequency of
the disturbance. However with a model of the disturbance it is possible
to design a controller that is tuned to the disturbance. Such a controller
can have a very high gain at the disturbance frequency. It will however
be sensitive to the disturbance model. This difficulty can be avoided by
adaptation. The lab illustrates this issue in a simple setting.

Process Model The sampled process dynamics are

y(t+ h) = ay(t) + b(u(t) + v(t))

with a = 1 and b = h and the disturbance v is generated by

v(t) − adv(t− h) + v(t− 2h) = e(t)

with ad = 2 cos(ωh). Nominal parameter values are a = b = 1, ω = 0.1
and h = 1.

3.1 Controller Design

We will compare three different controllers for the process. The first is a
conventional PI-controller which does not have enough complexity to suf-
ficiently reduce the effects of the disturbance. The second is a minimum
variance controller which relies on an accurate disturbance model to get
good performance. The last controller is a direct adaptive controller based
on the minimum variance controller.

7

Design of PI controller A PI-controller is first designed. This controller
has a simple structure.

(q− 1)u(t) = −(s0q+ s1)y(t)

With the process model

(q− a)y(t) = bu(t)

the pole placement design equation becomes

(q− a)(q− 1) + b(s0q+ s1) = q(q− am)

where the observer pole is placed in the origin. The controller parameters
s0 and s1 are found from

q1 : −1− a+ bs0 = −am
q0 : a+ bs1 = 0

This gives

s0 = (1+ a− am)/b
s1 = −a/b

and the controller becomes

u(t) = u(t− 1) − s0y(t) − s1y(t− 1)

Design of Minimum Variance Controller To account for the distur-
bance in a better way we need a more complex controller which incorporates
the disturbance model in the design procedure. We will therefore design a
minimum variance controller for the problem.

The noise model is given by

Ad(q)v(t) = v(t+ 2) − adv(t+ 1) + v(t) = e(t+ 2)

where ad = 2 cos(ωh) and the process model is

A(q)y(t) = y(t+ 1) − ay(t) = b(u(t) + v(t))

so that
AAdy(t) = bAdu(t) + be(t+ 2)

We write this as
A′y = B ′u+ C′ ē

with

A′ = AAd = (q− a)(q
2 − adq+ 1)

B ′ = BAd = b(q
2 − adq+ 1)

C′ = q3

ē(t) = be(t− 1)

8

The Diophantine equation we have to solve for the minimum variance con-
troller is

A′R + B ′S = q3B ′

with the constraint that B ′ is a factor of R. To get a monic R(q) we divide
the right hand side by b. This will give us a solution, R(q) and S(q), that is
a factor b smaller which does not affect the controller −S(q)/R(q). Hence
we instead solve

A′R + B ′S = q3B ′/b

with
R = R′B ′/b

Cancellation of B ′/b gives

(q− a)(q2 − adq+ 1)R
′ + bS = q3

The minimum degree solution has deg R′ = 0 and deg S = 2. We get R′ = 1
and the coefficients in S(q) can be computed from

q2 : −a− ad + bs0 = 0
q1 : 1+ ada+ bs1 = 0
q0 : −a+ bs2 = 0

This gives

R(q) = q2 + r1q+ r2 = R
′(q)B ′(q)/b = q2 − adq+ 1

S(q) = s0q
2 + s1q+ s2 = ((a+ ad)q

2 + (−1− ada)q+ a)/b

and the control law becomes

u(t) = adu(t−1)−u(t−2)+
1
b

(

−(a+ad)y(t)+(1+ada)y(t−1)−ay(t−2)
)

Design of Direct Adaptive Controller The minimum variance con-
troller was designed using the disturbance model and is therefore tuned to
that model. If the characteristics of the disturbance change, the controller
might perform badly. To cope with changing disturbances we will therefore
design an adaptive version of the controller. If we let the design equation
(with Ad canceled) operate on the output y(t) we get

(
A(q)R(q) + B(q)S(q)

)
y(t) = B(q)q3/by(t)

Using the input-output relation A(q)y(t) = B(q)u(t) we get

B(q)(R(q)u(t) + S(q)y(t)) = B(q)q3/by(t)

and we can cancel B(q). This results in

R(q)u(t) + S(q)y(t) = q3/by(t)

or
b((q2 + r1q+ r2)u(t) + (s0q

2 + s1q+ s2)y(t)) = q
3y(t)

9

The relation above holds for the correct controller and we can therefore use
it to directly estimate the unknown controller parameters. The parameter
b is assumed to be known so we can rewrite the relation as

y(t)/b− u(t− 1) = φT(t− 1)θ

where the left hand side is known and

φT(t− 1) =
(

u(t− 2) u(t− 3) y(t− 1) y(t− 2) y(t− 3)
)

and

θ =











r1

r2

s0

s1

s2











The parameter vector can now be updated using a recursive least-squares
algorithm. The estimates are then used in the control law derived for the
minimum variance controller.

Preparation 5 Study the minimum variance controller. Plot a Bode
diagram for the controller transfer function S(z)/R(z) and for the transfer
function from disturbance v to the output y, i.e. B(z)R(z)/(A(z)R(z) +
B(z)S(z)). How are they related to the disturbance characteristics?
Hint: Use the command bode to plot the Bode diagrams. See e.g. mv_bode.

3.2 Simulation Exercises

The three different controllers will now be investigated on the process in
Figure 3. In order to compare the different controllers quantitatively we
need a measurement of how well they perform. The criterion we will use
is:

V (t) =

t∑

i=1

y2(i)

Preparation 6 Investigate the performance of the PI-controller. Tune
the controller to get as good performance you can. How sensitive is the PI
controller to changing ω ?

10

Preparation 7 Use the tuned minimum variance controller. Compare
the performance with the PI controller. How sensitive is the tuned mini-
mum variance controller to changing ω ?

Exercise 8 Investigate the adaptive minimum variance controller. How
does it behave? Do the parameters converge? How does it adapt to changing
ω ? What is a good value of the forgetting factor? (This is a trade-off between
noise sensitivity and ability to track the varying ω .)

11

Figure 4 Simulink model pidDCsim used for simulation of fixed-PID-controlled
DC-servo.

4. Simulation and Testing

During the lab you will make use of six Simulink models. For each control
strategy you have available two Simulink models. One for simulations and
one for testing on the real plant.

4.1 The DC-servo system

Simulation The fixed-PID-controlled process can be simulated using the
model called pidDCsim (see Figure 4). You can change the controller pa-
rameter by double-clicking on the block PID. You can pause the simulation
by specifying time instances in the PAUSE block. This is useful when you
want to change the parameters of the plant during simulation.

The STUPID-controlled process can be simulated using the model called
stupidDCsim (see Figure 5). You can change the controller parameter by
double-clicking on the block STUPID. The following parameters are avail-
able:

• desired closed loop bandwidth (continuous-time parameter),

• closed loop damping (continuous-time parameter),

• initial estimates for R̃, S̃ (discrete-time parameter),

• forgetting factor in the Recursive Least-Square algorithm

• observer pole (discrete-time parameter),

• sampling time,

• d0 prediction horizon in the Direct Self Tuning algorithm

• the maximum amplitude of the control signal from the controller.

You can pause the simulation by specifying time instances in the PAUSE
block. This is useful when you want to change the parameters of the plant

12

Figure 5 Simulink model stupidDCsim used for simulation of STUPID-controlled
DC-servo.

0.1load disturbance

[time_ILC pos_Reference_ILC]

angle
reference

ILC_pos

Servo angle
ILC−iteration (1)

Run one ILC−iteration

Reset ILC (=1)

Reset and reinitialize
(also runs ILC_setup.m)

PID

Output Point

Output

Mux

Input Point ILC_correction

[time_ILC correction_ILC(:,idx_ILC)]

ILC
correction

11.2

s +0.12s2

DC−servo

Control

Band−Limited
White Noise

Figure 6 Simulation model ILC_pidDCsim using Iterative Learning Control (ILC)
for improving reference following.

during simulation. The scopes denoted mathcalR, mathcalS, T show the
parameters for R,S ,T .

The ILC-controlled process can be simulated using the Simulink model
called ILC_pidDCsim (see Figure 6). Start your simulations by typing

>>ILC_setup % contains filter definitions

>>ILC_pidDCsim % open Simulink model

and thereafter perform a number of ILC-iterations by double-clicking on
the yellow sub-system “ILC-iteration”1, see Figure 6.

1Each time you double-click on the yellow sub-system “ILC-iteration’, the matlab-script
run_ILC_iteration.m will be executed.

13

w

u
y

Process

y V

Performance

−y u

PI Controller

−y u

Minimum Variance
Controller

−y u

Direct Adaptive
Controller

Figure 7 Library blocks

Testing your controllers on the real process The Simulink models
used for testing the controllers on the real process are similar to those used
for simulation. They are called pidDCreal, stupidDCreal, ILC_pidDCreal
respectively.

Before each experiment, especially in the case of the self tuning controller,
you need to reset the current position to zero on the front panel of the servo.
By pressing the position reset button on the servo each time the controller
is started, the initial transient due to the control error is reduced. You
can induce the parameter variations in the process by using local feedback
from the connectors on the panel. In particular, for changing the moment
of inertia for the system you can use feedback from the angular velocity
sensor.

4.2 Minimum-variance Control

This last part of the laboratory exercise will not be tested on any real
process. The verifications are done using simulations solely.

• In Matlab write labmvlib to display the needed library. This contains
the controllers, process and the performance computation blocks (see
Figure 7).

• The system needed for the simulation has the structure shown in
Figure 8, and is implemented in the Simulink file named system_sim.

We shall compare the performance of the different controllers, we are in-
terested in running the same noise sequence in all three simulations. Im-
plement a significant variation of the noise characteristic beginning with
given time t (Hint: look at the natural frequency of the filter that gives the
colored noise).

There are three useful functions implemented, pi_bode which plots the
Bode diagram of the PI controller, mv_bode that does the same thing for
the minimum variance controller and finally da_bode and da_par which
plot the Bode diagram of the direct adaptive controller respectively the
parameters of the direct adaptive controller.

14

Step

w

u
y

Process

y V

Performance

−y u

PI Controller

Output

−1

 0

Control

Figure 8 Structure of the Simulink file system_sim.

5. Matlab help

The following is a list of useful commands in Matlab and the Control Sys-
tems Toolbox:

help Matlab help, try for example help control

tf Create transfer function model.

bode Plot Bode diagram.

margin Plot Bode diagram with gain- and phase margins.

c2d Convert continuous-time system to discrete-time.

conv Convolution, polynomial multiplication.

poly Create polynomials with specified roots.

6. Experimental setup

The wiring diagram is shown in Figure 9. The wiring is carried out prior
to the laboratory experiment because of the restricted time available.

ø 0.8#ø 0.8

ø 0,95

ø#0,3

ø 0,8

ø 0,8

ø 0,8

ø 0,8

ø 0,8

ø 0,8

ø#0,65

ø 0,8#ø 0,8

ø 0,95

ø#0,3

ø 0.8#ø 0.8

ø 0,8

ø 0,95

ø#0,3

ø#0,65

ø#0,65ø 0,5 ø 0,5#ø 0,5 ø#0,65

ø#0,65

ø 0,8

1
s

k
Js + dΣ

ωω

gnd

FRICTION
COMPENSATION

ON

POWER#SAT. OVL.#RESETPOS.RESET

LTH Reglerteknik#R/B 88

θ
x0,1

x0,2

x0,1

x0,2

-1-1-1

Current
magnitude

4V/A

Ext. in

Moment

Ext. Int. +

LTH Reglerteknik RB 88

Int

OffOff

Reference

Ref out

AO0

��

��

����AGND

PC

AI0
AI1

����

Figure 9 Wiring diagram.

Document history:
Created: September 2004 by Stefan Solyom and Anders Robertsson
Additional material by: K. J. Åström and H. Olsson

15

