
Department of

AUTOMATIC CONTROL

FRTN15 Predictive Control

Final Exam October 23, 2009, 08­13

General Instructions

This is an open book exam. You may use any book you want. However, no previous

exam sheets or solution manuals are allowed. The exam consists of 6 problems to

be solved. Your solutions and answers to the problems should be well motivated.

The credit for each problem is indicated in the problem. The total number of

credits is 25 points. Preliminary grade limits are:

Grade 3: 12 points

Grade 4: 17 points

Grade 5: 22 points

Results

The results of the exam will be posted at the latest October 26 on the notice

board on the first floor of the M-building and they will also be available on the

course home page.

Do you accept publication of your grading result on our local web

page? (Godkänner du publicering av resultatet på vår lokala hem-
sida?)





1.

u

−

+

y

ym

e

uc

Π

Π

Σ

Model

Object

km

s+ 1

−
γ

s

θ

k

s+ 1

Consider the gain adaptation problem of Fig. 1 for k > 0

u = θuc

Introduce the gain parameter

θ =
km

k

and the output error

e = y− ym = G(s)kθuc − kmG(s)u
c, G(s) =

1

s+ 1

with uc as command signal, ym the reference model output, y system output,

θ the gain parameter.

dθ

dt
= −γ uce

Show that the gain adaptation is stable in the sense of Lyapunov for γ > 0.
(2 p)

2. A process is modeled by

y(k) = b0u(k) + b1u(k− 1) + e(k),

where e(k) is a normally distributed white noise process.

a. Derive a least-squares estimator for the process. (2 p)

b. Derive expressions for the estimation error and estimation error covariance.

(2 p)

c. Present an input sequence u(k) resulting in a consistent estimator. Prove
your claim. (1 p)

3. This problem deals with MRAC design of an STR, similar to that of home-

work assignment 2. The sampled process and reference models are given

by

G =
B

A
, Gm =

Bm

Am
,
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where deg A = deg Am = 2 and deg B = deg Bm = 1. Also, A, Am are chosen
monic. The controller structure is given by the ARMAX controller

Ru = −Sy+ Tuc,

where uc, u and y are reference, control signal and system output, respec-

tively.

a. Assume that the zero of B is poorly damped. Mention a negative conse-

quency of canceling it by a controller pole. Show why it is not possible to

avoid this cancellation for an arbitrary choice of Bm. (2 p)

b. Let B = Bm and show that it is generally impossible to find a controller
without zero cancellation where deg R = 0. (2 p)

c. Describe how the controller structure can be modified in order to introduce

integral action and how this affects the minimal degree solution. (2 p)

d. What is the difference between direct and indirect MRAC? (1 p)

4. The dynamics of a plant are described by

{
xk+1 = Φxk + Γuk + dk

yk = Cxk,

with Φ = 1
2
, Γ = 1 and C = 2. The disturbance dk is constant dk = 3.

a. Extend the state to include the disturbance state dk = d and give the
extended dynamics. (2 p)

b. Explain (briefly) why a state observer is needed to use this model for control
synthesis, assuming d is unknown and not directly measurable. (1 p)

c. Give the questions for a one-step-ahead linear state estimator, which placed

all poles of the error dynamics at −1
2
. (2 p)

5. Model Predictive Control (MPC) is based on the receding horizon principle,
illustrated in Fig. 1. The aim is to decide a number of future input values

given a prediction of a finite number of future outputs. The first input

value is implemented, and the procedure is repeated at the next sampling

instance.

The controller is obtained by minimizing a cost function:

V (Ut,Yt) = Y
T
t QyYt + U

T
t QuUt (1)

where Ut and Yt are sequences of future control signals and outputs up to

horizons N and M respectively:

Ut =





u(t+ N − 1)

...

u(t)



 , Yt =





ŷ(t+ M pt)

...

ŷ(t+ 1pt)




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Figure 1 Illustration of the receding horizon principle used in Model Predictive Control

When the system is known, the predicted future outputs are given by the

predictor:





ŷ(t+ M pt)

...

ŷ(t+ 1pt)



 =





CAM

...

CA



 x̂(tpt) +





CB CAB CA2B . . .

0 CB CAB . . .
...

. . .
. . .

...









u(t+M − 1)

...

u(t+ N − 1)

...

u(t)





Yt = Dx x̂(tpt) + DuUt

a. Show that the cost function (1) can be written as:

V (Ut) = x̂(tpt)
TQx̂(tpt) + UTt RUt + 2x̂(tpt)

TSUt

and that the minimum is attained for:

Ut = −R
−1Sx̂(tpt)

(2 p)

b. The MPC formulation described here assumes that a process model is avail-

able. Can you suggest a way of modifying the algorithm to create an adaptive

MPC controller? (Hint: Consider the sequence of predicted outputs Yt, as
well as the way in which process parameters are identified in the least-

squares algorithm ) (1 p)

6. One possible strategy for Iterative Learning Control (ILC) is given by the
equations:

yk(t) = Gc(q)uk(t)

ek(t) = r(t) − yk(t)

uk(t) = Q(q)[uk−1(t) + L(q)ek−1(t)]

where Gc(q) is the closed-loop transfer function of the system and q is the
forward time shift operator.
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Figure 2 ILC set-up in Problem 6

a. Explain the principle of operation of Iterative Learning Control. (1 p)

b. Assume that Q(q) = 1 and that

GC(q) =
1

(q− 0.7)(q− 0.9)
, L(q) = k(q− 0.5)(q− 0.7)(q− 0.9)

where k is a positive constant. Does there exist k > 0 for which the ILC
scheme converges? Motivate your answer. (2 p)
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