
Solutions to Predictive Control exam, October 16, 2007

1.

a. A regression model can be defined:

ŷk = φTk−1θ

where:

φTk−1 = [−yk−1 −yk−2 uk−1 uk−2 ]

θ =




a1

a2

b1

b2




Using Least Squares, an estimate of θ is given by:

θ̂ = (ΦTΦ)−1ΦTY

b. For online use, the Recursive Least Squares (RLS) algorithm can be used:

θ̂ k = θ̂ k−1 + Kkǫk

ǫk = yk − φTt−1θ̂ t−1

Kk = Pk−1φ k−1(1+ φTk−1Pk−1φ k−1)
−1

Pk = (I − Kkφ
T
k−1)Pk−1

The estimate θ̂ is updated at each sample. To start the algorithm, an ini-
tial parameter guess θ0 and corresponding covariance matrix P0 must be
supplied.

c. When the unknown parameters are time varying, it is desireable to disre-

gard ‘old’ information, related to previous values of the parameters. This

can be accomplished by the following modification to the RLS algorithm:

θ̂ k = θ̂ k−1 + Kkǫk

ǫk = yk − φTt−1θ̂ t−1

Kk = Pk−1φ k−1(λ + φTk−1Pk−1φ k−1)
−1

Pk = (I − Kkφ
T
k−1)Pk−1/λ

where λ is known as the ‘forgetting factor’, λ ∈ [0, 1]. It provides an ex-
ponentially decreasing weight on old data, meaning more recent data is

primarily used for generating new estimates. This allows the estimator to

‘track’ time varying parameters more easily.

2.
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a. The receding horizon principle is illustrated in Figure 1. The aim is to decide

a number of future input values (changes) given a prediction of a finite
number of predicted future outputs. This is normally done by setting up a

cost function. If constraints are present, a constrained optimization problem

results, which is typically solved by numerical methods. The solution is a

sequence of control moves, of which the first value is implemented, and the

procedure is repeated at the next sampling instant.

The prediction horizon M is the number of time steps for which predicted

outputs are computed. It should be chosen such that the important time

constants of the system are captured in the horizon. The control horizon N

is the number of future control moves considered. Typically, this is chosen

to be smaller than the prediction horizon, since the number of control moves

determines the complexity of the optimization problem to be solved.

b. The constraint must be fulfilled at all time instances k, so we have:

−10 ≤ yk+1 ≤ 10

but:

yk+1 = 5xk+1 = 2.5xk + 10uk

Rewriting uk as uk−1 + ∆uk gives:

yk = 2.5xk + 10uk−1 + 10∆uk

Substituting this into the constaint gives:

−10 ≤ 2.5xk + 10uk−1 + 10∆uk ≤ 10

Using the fact that xk = 1 and uk−1 = −1 gives:

−0.25 ≤ ∆uk ≤ 1.75

as required.

t

reference r

N

M

predicted output ŷ

control input u

past output y

t -1 t +1 ... t +N ... t +M

Figur 1 Illustration of the receding horizon principle used in Model Predictive Control
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c. Since the disturbance is constant we have dk+1 = dk. To include the effects
of the disturbance in the process model we can extend the state vector:

xek

[
xk

dk

]

which allows an augmented model to be constructed:

[
xk+1

dk+1

]
=

[
A B

0 I

] [
xk

dk

]
+

[
B

0

]
uk

yk = [ C 0 ]

[
xk

dk

]

Since the extended state vector contains the unknown disturbance, a state

observer will be needed. A Kalman filter can be used. A stable observer will

converge to the correct value of dk and the closed loop system will exhibit

error-free tracking.

3.

a. The process zero is B = B+B−, where:

B+ = q+
b1

b0
B− = b0

To cancel B+, the R polynomial must contain B+. Integral action is also

required, so R must also contain a factor of (q− 1). This gives:

R = B+R′ R′ = (q− 1)R′′

The Diophantine equation is then:

A(q− 1)R′′ + B−S = AmAo

To determine the order of the observer polynomial Ao, the following causa-

lity condition may be used:

deg Ao = 2deg A− deg Am − deg B
+ + 1− 1 = 4− 2− 2+ 1− 2 = 1

The degree of R′′ is therefore:

deg R′′ = deg Ao + deg Am − deg A− 1 = 0

and:

deg R = deg S = degT = 2

The Diophantine equation may then be solved with this choice of degree:

(q2 + a1q+ a2)(q− 1) + b0(s0q
2 + s1q+ s2) = (q

2 + am1q+ am2)(q+ ao)

Identification of coefficients gives:

q3 : 1 = 1

q2 : a1 − 1+ b0s0 = ao + am1

q1 : a2 − a1 + b0s1 = am1ao + am2

q0 : −a2 + b0s2 = am2ao
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which gives

s0 =
ao + am1 − a1 + 1

b0

s1 =
am1ao + am2 − a2 + a1

b0

s2 =
am2ao + a2
b0

the closed loop system is given by

BT

AR + BS
=

BT

AmAoB+
=
b0T

AmAo
=
Bm

Am
[ T =

1

b0
BmAo

which gives

R(q) = q(q− 1)

S(q) = s0q
2 + s1q+ s2

T(q) =
1

b0
(bm1q+ bm2)(q+ ao)

b. Begin by letting the Diophantine equation operate on y(t):

ARy(t) + BSy(t) = AmAoB
+y(t)

Assuming cancellation of B+, and by substituting Ay(t) = Bu(t), we obtain:

b0(Ru(t) + Sy(t)) = AmAoy(t)

This can be rewritten as:

y(t) =
b0

AmAo
(Ru(t) + Sy(t))

= R̃
b0

AmAo
u(t)

︸ ︷︷ ︸
u f (t)

+S̃
b0

AmAo
y(t)

︸ ︷︷ ︸
yf (t)

where R̃ = b0R and S̃ = b0S. Thus a regression model can be constructed
with u f (t) and y f (t) as regressors and the controller coefficients as para-
meters. Notice that this design assumes that the process zeros are stable.

4.

a. The Diophantine equation is

(1+ 0.7z−1) = (1− 0.9z−1)( f0 + f1z
−1) + z−2�0

with the solution





z0 : 1 = f0

z−1 : 0.7 = −0.9 f0 + f1

z−2 : 0 = −0.9 f1 + �0





f0 = 1

f1 = 1.6

�0 = 1.44
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gives the expansion

yk+2 = F∗(q−1)ek+2 +
G∗(q−1)

A∗(q−1)
wk

The resulting two-step predictor is

yk+2 = F∗(q−1)ek+2 +
G∗(q−1)

A∗(q−1)
wk

ŷk+2 =
G∗(q−1)

A∗(q−1)
wk =

G∗(q−1)

C∗(q−1)
yk

=
1.44

1+ 0.7q−1
yk

ŷk+2 = −0.7ŷk + 1.44yk

The error covariance is

{ỹ2k+2pFk} = ( f
2
0 + f

2
1 )σ 2 = 3.56σ 2

b. Using diophantine equation C∗ = A∗F∗ + z−2G∗ yields the same F∗ and

G∗ polynomials as in the predictor case above. This gives the minimum
variance controller:

u(k) =
G∗(q−1)

B∗(q−1)F∗(q−1)
y(k) =

1.44

(1+ 0.5q−1)(1+ 1.6q−1)
y(k)

5. Assume that the transfer function G(s) has a state-space realization

ẋ = Ax + Bu

y = Cx, Y(s) = G(s)U(s)

and

ẋm = Axm + B(kmu
c)

y = Cxm, Ym(s) = G(s)kmU
c(s)

The error model

xe = x − xm

e = y− ym, E(s) = G(s)(kθ − km)U
c(s)

with the error dynamics

ẋe = Axe + B(kθ − km)u
c = Axe + B ku

c
︸︷︷︸

φ

θ̃

e = Cxe

Introduce the Lyapunov function candidate

V (xe, θ̃ ) =
1

2
xTe Pxe +

µ

2
θ̃Tθ̃ , P = PT > 0, µ > 0
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with the derivative

dV (xe, θ̃ )

dt
=
1

2
xTe (PA+ A

TP)xe + x
T
e PB(kθ − km)u

c + µθ̃T
dθ̃

dt

=
1

2
xTe (PA+ A

TP)xe + θ̃T(BTPxkuc + µ
dθ̃

dt
)

Under the conditions of the Kalman-Yakubovich-Popov (KYP) Lemma, we
have for an SPR transfer function G(s)

PA+ ATP = −Q, Q = QT > 0, P = PT > 0

C = BTP

then the adaptation law

dθ̂

dt
= −γ BTPxe︸ ︷︷ ︸

e

kuc︸︷︷︸
φ

= −γ φ e, γ = µk

will render the Lyapunov function negative definite with respect to xe, that

is

dV (xe, θ̃ )

dt
=
1

2
xTe (PA+ A

TP)xe

= −
1

2
xTe Qxe < 0, qxeq ,= 0

dθ̃

dt
=
dθ̂

dt
= −γ φ e

Whereas it is possible to claim asymptotic stability of the error dynamics

with respect to the error dynamics of xe, only stability (in the sense of

Lyapunov) can be established for the adaptation error dynamics of θ̃

6.

a. ILC can be used to improve tracking performance for systems in which

the same reference trajectory is used repetitively. The strategy is based on

collection of a data set and filtering operations upon the data. Non-causal

filtering may be used since the filtering is performed offline. A typical ex-

ample of an ILC application is trajectory following for a robotic manipulator,

where modelling inaccuracies typically give rise to tracking errors.

b. 1. In this case it is likely that ILC will provide improved performance,

assuming stochastic disturbances are small in magnitude.

2. In this example ILC is also likely to improve performance since an ac-

curate model describing the fluid dynamics is most likely not available.

3. Since the process outputs are corrupted by noise, it is possible that

ILC will fail to converge.

4. In this case, stochastic disturbances such as wind velocity are likely to

be the dominating influence on performance. Therefore it is unlikely

that ILC will improve the situation.
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c. We obtain the following recursive expression for the tracking error

ek(t) = (1− LGC)ek−1(t)

and convergence will be achieved if

p 1− L(eiωh)GC(e
iωh) p< 1

where ωh ∈ [−π ,π ] and h is the sampling time—i.e., the Nyquist curve of
L(z)GC(z) should be contained in a region in the complex plane given by a
circle with radius one centered at z = 1. Simplification gives

p 1− keiωh − 0.5 p< 1, ωh ∈ [−π ,π ]

from which the range of k ∈ [−0.5, 0.5] is determined.
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