
Department of

AUTOMATIC CONTROL

Multivariable Control Exam

Exam 20140108

Grading

All answers must include a clear motivation and a well-formulated answer. An-

swers may be given in English or Swedish. The total number of points is 25. The

maximum number of points is specified for each subproblem.

Accepted aid

The textbook Glad & Ljung, standard mathematical tables like TEFYMA, an au-

thorized “Formelsamling i Reglerteknik”/”Collection of Formulas” and a pocket
calculator. Handouts of lecture notes and lecture slides are also allowed.

Results

The results will be reported via LADOK.
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1. Consider the feedback system in Figure 1.
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Figure 1 The system in Problem 1.

a. Give a state space realization of the system with inputs r, v and n and

outputs e, u and y. (1 p)

b. Determine the entries of the transfer matrix





Per(s) Pev(s) Pen(s)
Pur(s) Puv(s) Pun(s)
Pyr(s) Pyv(s) Pyn(s)





mapping the inputs r, v and n to the outputs e, u and y. (1 p)

c. After permutation (re-ordering) of the inputs and outputs, the step re-
sponses of the system have been plotted in Figure 2. Determine the new

order of inputs and outputs. (1 p)
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Figure 2 Step response plots for Problem 1. The inputs and outputs have been re-

ordered.
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d. Suppose that the load disturbance v and the measurement disturbance n

are both constant and zero, while the reference signal r is a zero-mean

stochastic process with spectral density Φr(ω ) = 2
ω 2+100 . Determine the

spectral density of e. (2 p)

Solution

a. The first order process can be written

ẋ = −2x + u+ v

Combining this with

u = 4e = 4(r − y) = 4[r − (x + n)] = 4r − 4x − 4n

gives the state realization

ẋ = −6
︸︷︷︸

A

x +


 4 1 −4




︸ ︷︷ ︸

B





r

v

n









e

u

y




=





−1
−4
1





︸ ︷︷ ︸

C

x +





1 0 −1
4 0 −4
0 0 1





︸ ︷︷ ︸

D





r

v

n





b. The transfer matrix is





Per(s) Pev(s) Pen(s)
Pur(s) Puv(s) Pun(s)
Pyr(s) Pyv(s) Pyn(s)




= C(sI − A)−1B + D

=





−1
−4
1




(s+ 6)−1



 4 1 −4


+





1 0 −1
4 0 −4
0 0 1





=





1− 4
s+6 − 1

s+6 −1+ 4
s+6

4− 16
s+6 − 4

s+6 −4+ 16
s+6

4
s+6

1
s+6 1− 4

s+6





c. The starting points of the step responses should be given by the D-matrix,

so the input order is (n,v, r) and the output order is (e, y,u).

d. The spectrum of e is given by the formula

Φ e(ω ) = Per(iω )Φr(ω )Per(iω )∗

=
(

1− 4

iω + 6

)
2

ω 2 + 100

(

1− 4

iω + 6

)
∗

= 2(ω 2 + 4)
(ω 2 + 36)(ω 2 + 100)
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2. Your boss has heard that you are great at automatic control and wants

some help finding a good controller for the process P(s) = 1
1+se

−0.5s.

a. He wants a fast system; the bandwidth ω b should be at least 10 rad/s. If it
is possible, find a stabilizing controller that meets the specification. If it is

not possible, explain why. (1 p)
b. Your boss gets a little impatient and tries to find a controller himself. He

claims that he will get a fast enough system with the controller

C(s) = 50+ 10s
s

e0.5s.

He shows you the margin plot of the open loop system PC where everything

looks nice, see Figure 3. You do however see a very big problem with this

design. What is the problem that you need to explain to your boss? (1 p)
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Figure 3 Margin plot for the open loop system in problem 2b.

Solution

a. It is not possible to fulfill the specification due to the fundamental limitation

on the bandwidth of a time-delayed system. A system on the form G(s) =
G1(s)e−sL, where G1 is a rational function, will have the limited bandwidth
ω B < 1/L which in this case means that you can get a bandwidth of at
most 2 rad/s.

b. You can not realize a controller with the factor e0.5s in it, since such a

controller would be non-causal.

3. Consider the double integrator

ẋ =
[
0 1

0 0

]

x +
[
0

1

]

u,

z = [ 1 2 ] x.
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a. Find the LQR controller that minimizes

∫ ∞

0

(

zT(t)z(t) + uT(t)u(t)
)

dt.

(2.5 p)

b. Determine the stationary value u∗(r) of the optimal input u when the ref-
erence value for z is r. (0.5 p)

c. Find the LQR controller that minimizes

∫ ∞

0

(

(z(t) − r)2 + (u(t) − u∗(r))2
)

dt.

(1 p)

Solution

a. The fastidious would start by ascertaining controllability of the system.

Since we are not, we skip that step. Let

S =
[
s1 s2

s2 s3

]

be the unique positive definite solution to the Riccati equation

MTQ1M + ATS+ SA− (SB + Q1,2)Q−12 (SB + Q1,2)T = 0,

where

A =
[
0 1

0 0

]

, B =
[
0

1

]

, M = [ 1 2 ] ,

Q1 = I, Q2 = I, Q1,2 = 0.

This yields

[1 2 ]T [ 1 2 ] +
[
0 1

0 0

]T [
s1 s2

s2 s3

]

+
[
s1 s2

s2 s3

] [
0 1

0 0

]

−
[
s1 s2

s2 s3

] [
0

1

] [
0

1

]T [
s1 s2

s2 s3

]

= 0

Z[
[
1 2

2 4

]

+
[
0 0

s1 s2

]

+
[
0 s1

0 s2

]

−
[
s2

s3

]

[ s2 s3 ] = 0

Z[
[

1− s22 2+ s1 − s2s3
2+ s1 − s2s3 4+ 2s2 − s23

]

= 0.

Z[







s2 = 1,
s1 = s2s3 − 2,

s3 =
√

4+ 2s2

Z[







s2 = 1,

s1 =
√
6− 2,

s3 =
√
6.
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This gives the optimal state feedback gain

L = Q−12 (SB + Q1,2)T =
[
0

1

]T [
√
6− 2 1

1
√
6

]

= [1
√
6 ] .

Thus, the sought controller is

u(x) = − [1
√
6 ] x.

b. In stationarity we have

ż = Mẋ = ẋ1 + 2ẋ2 = 0
Z[ ẋ1 = −2ẋ2. (1)

In stationarity we also have u̇ = 0, which together with the second state
equation yields

0 = u̇ = ẋ2. (2)
Combining the two state equations with equations (1) and (2) yields in
stationarity

u = x2 = ẋ1 = −2ẋ2 = 0.
The stationary input value

u∗(r) = 0
is thus necessary in order for z = r in stationarity, for any r.

c. The integral is minimized with the LQR controller

u = −Lx + lrr,

where L was determined in problem a., and lr is chosen to get unitary

stationary gain in the closed-loop system, that is

lr = (M(BL − A)−1B)−1 =
(

[1 2 ]
([
0

1

]

[1
√
6 ] −

[
0 1

0 0

])−1 [
0

1

])−1

=
(

[1 2 ]
[
0 −1
1
√
6

]−1 [
0

1

])−1

=
(

[1 2 ]
[√
6 1

−1 0

] [
0

1

])−1

=
(

[1 2 ]
[
1

0

])−1
= 1.

Thus, the sought controller is

u(x, r) = − [1
√
6 ] x + r.

Note that the solution is entirely independent of u∗, which it would have

been even if u∗ were non-zero.

4.

6



a. Consider control of the process

P(s) = 1

s+ 1.

If a proportional controller

C(s) = K
is used, for what values of K will the closed-loop system in Figure 4 be

stable? (1 p)

r
Σ

e
C

u
P

y

−1

Figure 4 Block diagram of the closed-loop system in Problem 4.

b. Consider the situation where C instead is an unknown time-varying func-

tion K (t), with an upper and lower limit of ±α . That is, for all times

−α ≤ K (t) ≤ α .

For what positive values of α can stability of the closed-loop system be

guaranteed? Hint: Use the small-gain theorem! (3 p)

Solution

a. The closed-loop transfer function is given by

G(s) = P(s)C(s)
1+ P(s)C(s) =

K
s+1

1+ K
s+1

= K

s+ 1+ K .

The closed-loop system is thus (asymptotically) stable if and only

K > −1.

b. We rewrite the block diagram into a form compatible with the small gain

theorem, which yields the block diagram in Figure 5.

C
r e

Σ

−y −P

u

Figure 5 Block diagram of the closed-loop system in Problem 4.
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Since both C and −P are stable systems, we can apply the small gain
theorem. Since −P is linear, time-invariant and SISO, its system gain is

pp − Ppp∞ = sup
ω

p − G(iω )p = sup
ω

∣
∣
∣
∣
− 1

iω + 1

∣
∣
∣
∣
= sup

ω

1√
ω 2 + 1

= 1.

For C we have

ppCpp2∞ = sup
e,=0

ppK ⋅ epp22
ppepp22

= sup
e,=0

∫ ∞

−∞
(K (t) ⋅ e(t))2dt
∫ ∞

−∞
(e(t))2dt

≤ sup
e,=0

α 2

∫ ∞

−∞
(e(t))2dt

∫ ∞

−∞
(e(t))2dt

= α
2.

The small gain theorem thus gives stability if

ppCpp∞ ⋅ pp − Ppp∞ < 1

Z[ ppCpp∞ <
1

pp − Ppp∞
Z[ α < 1.

5. Consider a system S1 described by

ẋ =
[−1 0

−1 −1

]

x +
[
2

0

]

u,

y = [0 2 ] x.

a. Compute the Hankel singular values. (2 p)
b. Balanced truncation is performed to yield a first-order approximation S2 of

the original system S1. Provide an upper bound on ppS1−S2pp. Note that you
do not need to calculate S1. (1 p)

Solution

a. Let

S =
[
s1 s2

s2 s3

]

, O =
[
o1 o2

o2 o3

]

be the controllability and observability Gramians, respectively. The control-

lability Gramian is found as the unique symmetric solution of the Lyapunov

equation

AS+ SAT + BBT = 0

\
[−1 0

−1 −1

] [
s1 s2

s2 s3

]

+
[
s1 s2

s2 s3

] [−1 −1
0 −1

]

+
[
2

0

]

[ 2 0 ] = 0

\
[ −s1 −s2
−s1 − s2 −s2 − s3

]

+
[−s1 −s1 − s2
−s2 −s2 − s3

]

+
[
4 0

0 0

]

= 0

\







−2s1 + 4 = 0,
−s1 − 2s2 = 0,
−2s2 − 2s3 = 0

\







s1 = 2,
s2 = −1,
s3 = 1.
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The observability Gramian is found as the unique symmetric solution of the

Lyapunov equation

ATO + OA+ CTC = 0

\
[−1 −1
0 −1

] [
o1 o2

o2 o3

]

+
[
o1 o2

o2 o3

] [−1 0

−1 −1

]

+
[
0

2

]

[ 0 2 ] = 0

\
[−o1 − o2 −o2 − o3

−o2 −o3

]

+
[−o1 − o2 −o2
−o2 − o3 −o3

]

+
[
0 0

0 4

]

= 0

\







−2o1 − 2o2 = 0,
−2o2 − o3 = 0,
−2o3 + 4 = 0

\







o1 = 1,
o2 = −1,
o3 = 2.

The Gramians are thus

S =
[
2 −1
−1 1

]

, O =
[
1 −1
−1 2

]

.

The Hankel singular values σ are given by

0 = det(SO −σ
2 I) =

∣
∣
∣
∣

3−σ 2 −4
−2 3−σ 2

∣
∣
∣
∣
= (3−σ

2)2 − 8 = σ
4 − 6σ 2 + 1

\ σ
2 = 3±

√
8.

Since the Hankel singular values are positive, we get

σ =
√

3±
√
8 =

√

3± 2
√
2 =

√

(1±
√
2)2 =

√
2± 1.

b. We have

ppS1 − S2pp = sup
u ,=0

ppS1(u) − S2(u)pp2
ppupp2

≤ sup
u ,=0
2σ r = 2σ r,

where σ r is the Hankel singular value of the truncated state. Thus, by

choosing σ r =
√
2− 1, we obtain

ppS1 − S2pp ≤ 2
√
2− 2.

6. Consider a system described by the following transfer function matrix

G(s) =
[
1
1+s

−1
s+1

2s
s+2

2s
s+2

]

Suggest a suitable transformation for doing decoupled control and provide

the overall structure of the controller. (You do not have to design any specific
controller for the decoupled systems) (2 p)
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Solution

We notice that the first output is driven by the difference of the control sig-

nal, the second output is driven by the sum, we can thus make a coordinate

change in the output of our controllers exploiting this information.

u = Fû,

Û1 = C1Y1,

Û2 = C2Y2

F =
[
0.5 0.5

−0.5 0.5

]

=[ Y = GFÛ =
[
1
1+s 0

0 2s
s+2

]

Û

We thus see that this choice of F completely decouples our system.

7.

a. Design an internal model controller for the system

P(s) =






s− 1
s+ 2 0

0
1

s+ 4




 .

If you have the possibility to decide the crossover frequency ω c for the open

loop of any of the subsystems, choose your design parameters such that

ω c = 2 rad/s. (3 p)

b. Internal model controllers can also be designed by solving a convex opti-

mization problem of the form

min
Q
ppT1 + T2Qpp.

Here T1 and T2 can be chosen so that

T1 + T2Q =
(
WSS

WTT

)

,

where S = (I + PC)−1 is the sensitivity function and T = PC(I + PC)−1 is
the complementary sensitivity function and WS as well as WT are weighting

functions. After finding the optimal Q, the controller can be obtained as

C = (I − QP)−1Q. Find expressions for T1 and T2 in terms of a general
process P as well as general weighting functions WS and WT .

Hint: Use S+ T = I! (2 p)

Solution
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a. By following the recommendations in the book for how to handle non-

minimum phase zeros and how to make Q proper we get

Q(s) =






s+ 2
s+ 1 0

0
s+ 4

λs+ 1




 .

The corresponding controller is given by

C(s) = (I − Q(s)P(s))−1Q(s) =






s+ 1− (s− 1)
s+ 1 0

0
λs+ 1− 1

λs+ 1






−1

Q(s) =

=






s+ 1
2

0

0
λs+ 1

λs











s+ 2
s+ 1 0

0
s+ 4

λs+ 1




 =






s+ 2
2

0

0
s+ 4

λs




 .

The open-loop transfer function is

P(s)C(s) =






s− 1
s+ 2 0

0
1

s+ 4











s+ 2
2

0

0
s+ 4

λs




 =






s− 1
2

0

0
1

λs




 .

If we choose the design parameter λ = 0.5, the subsystem (2,2) will get the
crossover frequency ω c = 2 rad/s.

b. We first solve the controller equation for Q, that is

C = (I − QP)−1Q
Z[ (I − QP)C = Q
Z[ C = Q + QPC
Z[ C(I + PC)−1 = Q.

Thus

T1 + T2Q =
(
WSS

WTT

)

=
(
WS(I − T)
WTT

)

=
(
WS
(
I − PC(I + PC)−1

)

WT
(
PC(I + PC)−1

)

)

=
(
WS(I − PQ)
WTPQ

)

=
(
WS

0

)

︸ ︷︷ ︸

T1

+
(−WSP
WTP

)

︸ ︷︷ ︸

T2

Q.
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