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Grading

All answers must include a clear motivation and a well-formulated answer. An-
swers may be given in English or Swedish. The total number of points is 25. The
maximum number of points is specified for each subproblem.

Accepted aid

The textbook Glad & Ljung, standard mathematical tables like TEFYMA, an au-
thorized “Formelsamling i Reglerteknik”/”Collection of Formulas” and a pocket
calculator. Handouts of lecture notes and lecture slides are also allowed.

Results
The results will be reported via LADOK.



1.

Consider the feedback system in Figure 1.

Figure 1 The system in Problem 1.

. Give a state space realization of the system with inputs r, v and n and

outputs e, u and y. (1p)
. Determine the entries of the transfer matrix
Per(s) Pev(s) Pen(s)
Pur(s) Puv(s) Pun(s)
Py (s)  Pyu(s) Pyl(s)
mapping the inputs r, v and n to the outputs e, © and y. (1p)

. After permutation (re-ordering) of the inputs and outputs, the step re-

sponses of the system have been plotted in Figure 2. Determine the new
order of inputs and outputs. (1p)
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Figure 2 Step response plots for Problem 1. The inputs and outputs have been re-
ordered.



d. Suppose that the load disturbance v and the measurement disturbance n
are both constant and zero, while the reference signal r is a zero-mean
stochastic process with spectral density ®,(w) = m. Determine the
spectral density of e. (2 p)

Solution

a. The first order process can be written
x=-2x+u+v
Combining this with
u=4e=4(r—y)=4r—(x+n)] =4r—4x —4n

gives the state realization

r
x=—6x+(4 1 —4] v
N————
A % n
-1 10 -1 r
ul|l=|-4]1x+14 0 -4 v
1 0 0 1 n
—— ~—_——
C D
b. The transfer matrix is
Per(s) Pev(s) Pen(s)
Pur(s) Pu(s) Pun(s) | =C(sI—A)'B+D
Py.(s) Py(s) Py(s)
(—1 1 0 -1
S (s+6)—1(4 1 —4]+ 4 0 —4
1 0 0 1
4 1 4
-5 —s 1t
_ 16 4 16
= |4-5% —s6 ~4tors
4 1 14
s+6 s+6 s+6

c. The starting points of the step responses should be given by the D-matrix,
so the input order is (n,v,r) and the output order is (e,y,u).

d. The spectrum of e is given by the formula
D, (w) = Por(i0) D, (@) P (i) *

_ (4 4 2 1 4 *
- io+6) w2+ 100 i+ 6

B 2(w? + 4)
(w2 + 36) (w2 + 100)




2.  Your boss has heard that you are great at automatic control and wants
some help finding a good controller for the process P(s) = I—}nge_o'f’s.

a. He wants a fast system; the bandwidth @; should be at least 10 rad/s. If it
is possible, find a stabilizing controller that meets the specification. If it is
not possible, explain why. (1p)

b. Your boss gets a little impatient and tries to find a controller himself. He
claims that he will get a fast enough system with the controller

50 + 10
C(S) — yeo.Ss.
s
He shows you the margin plot of the open loop system PC where everything

looks nice, see Figure 3. You do however see a very big problem with this
design. What is the problem that you need to explain to your boss? (1 p)

Bode Diagram
Gm =Inf, Pm =70.7 deg (at 10.9 rad/s)
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Figure 3 Margin plot for the open loop system in problem 2b.

Solution

a. It is not possible to fulfill the specification due to the fundamental limitation
on the bandwidth of a time-delayed system. A system on the form G(s) =
G1(s)e*L, where G is a rational function, will have the limited bandwidth
®wp < 1/L which in this case means that you can get a bandwidth of at
most 2 rad/s.

b. You can not realize a controller with the factor e%5 in it, since such a
controller would be non-causal.

3. Consider the double integrator

<[y Jes[1)

z=[1 2]x.



a. Find the LQR controller that minimizes

/ h (" 0=(0) +u" (Ou(t)) d.

0

(2.5 p)
b. Determine the stationary value u*(r) of the optimal input u when the ref-
erence value for z is r. (0.5 p)

c. Find the LQR controller that minimizes

| (o7 + @ -we)?) a
0

(1p)

Solution

a. The fastidious would start by ascertaining controllability of the system.
Since we are not, we skip that step. Let

S— [81 32]
S9 S3
be the unique positive definite solution to the Riccati equation
MT@M + A"S+SA—(SB + @12)@;" (SB + Q12)" =0,

where

This yields
oo s p [
0 0 So2 83 S92 83 0 0
o A RIET o =
s2 s3] 1] [1 Sy s3]

M1 2:|+[0 0 +081 82[ ]_0
_2 4 S1 S92 0 S9 S3 %2 S8l=

1—8% 2+81—8283:|_0
| 2 4+ 81 — 8983 4+282—s§ -

32=1, 82:17

!

!

= §1 =8283 — 2, <= s1=v6-2,

S3=\/4—|—282 83:\/6.



This gives the optimal state feedback gain

or[\/é—z 1

L=@Q; (SB+Q12)" = [1 L e

] =[1 V6].
Thus, the sought controller is
u(x)=—[1 V6]x.
. In stationarity we have
Z=Msx =%+ 2% =0
= & = —24%. (1)

In stationarity we also have & = 0, which together with the second state
equation yields
0=1u = xs. (2)

Combining the two state equations with equations (1) and (2) yields in
stationarity
u=x2:x1:—2x2:0.

The stationary input value
u*(r)=20

is thus necessary in order for z = r in stationarity, for any r.

. The integral is minimized with the LQR controller
u=—Lx+1,r,

where L was determined in problem a., and [, is chosen to get unitary
stationary gain in the closed-loop system, that is

oo (e (3 3]) 1)
S CEIR RH S CEHINI
)

Thus, the sought controller is

u(x,r)=—[1 V6]x+r.

Note that the solution is entirely independent of u*, which it would have
been even if u* were non-zero.



a. Consider control of the process

1
P =
() =171
If a proportional controller
C(s) =K
is used, for what values of K will the closed-loop system in Figure 4 be
stable? (1p)
r e u Yy
C P
-1

Figure 4 Block diagram of the closed-loop system in Problem 4.

b. Consider the situation where C instead is an unknown time-varying func-
tion K (¢), with an upper and lower limit of +«. That is, for all times

—a<K(t) <a.
For what positive values of « can stability of the closed-loop system be
guaranteed? Hint: Use the small-gain theorem! (3 p)
Solution

a. The closed-loop transfer function is given by

G = PECE) _ 5 K
1+P(s)C(s) 1+K s+1+K

The closed-loop system is thus (asymptotically) stable if and only
K > —1.

b. We rewrite the block diagram into a form compatible with the small gain
theorem, which yields the block diagram in Figure 5.

Figure 5 Block diagram of the closed-loop system in Problem 4.



Since both C and —P are stable systems, we can apply the small gain
theorem. Since —P is linear, time-invariant and SISO, its system gain is
‘ 1 1

= l=sup— =1
za)+1‘ o w?+1

|| = P||loo = sup| — G(iw)| = sup
w

[0

For C we have

K -e|[3 (/W(K1ﬂ~dnfdt a{/m(dnfdt

||C||§o=sup7”e||2 = sup == < sup —5>
g0 el Cewpa R [ e)rar
—c0 —00
2
=a”.

The small gain theorem thus gives stability if

IClloo - Il = Plloo < 1
1

= ||C||lo < 7——
| = Plloo

— a<l1.

5. Consider a system §; described by

%= [j _(’l]x+mu,
y=[0 2]x.

a. Compute the Hankel singular values. (2 p)

b. Balanced truncation is performed to yield a first-order approximation Ss of
the original system S;. Provide an upper bound on ||.5; — S2||. Note that you
do not need to calculate .§;. (1p)

Solution

a. Let
S:[sl 82]’ O:|:01 02}

S9 83 02 O3
be the controllability and observability Gramians, respectively. The control-
lability Gramian is found as the unique symmetric solution of the Lyapunov
equation

AS +SAT + BBT =0
-1 0 S1 82 S1 82 -1 -1 2

& + 2 0]=0
[—1 —1] [82 33] [82 ngo —1%[0}[ ]

—s — —s; —S1— 4 0
- { 1 S2 ]+[81 1 52}+[ —0
—S81 —89 —S892 —S83 —S9 —S89 — 83 0 0

—281+4=0, 8122,
< —81 — 2s9 =0, < sg = —1,
—282 — 283 =0 S3 = 1.



The observability Gramian is found as the unique symmetric solution of the
Lyapunov equation

ATo+0A+CTCc =0
[—1 -1 01 02 01 09 -1 0 0

& 0 2]=0
0 —1} [02 03]+[02 03] [—1 —1]+[2][ |

[—01 —0y —0g— —01—0g — 0 0
& 01 09 09 03:|+[ 01 09 02]+|: ]:0

—02 —03 —02 — 03 —O03 0 4
—201 — 209 =0, o1 =1,
< —209 — 03 =0, & 09 = —1,
—203+4=0 03 = 2.

The Gramians are thus

The Hankel singular values o are given by

3—02 —4
-2 3-o02
& o?=3+V8.

0=det(SO—0'21)=‘ =3-0%)2-8=0"-60%+1

Since the Hankel singular values are positive, we get

0'=\/3:|:\/§=\/3:|:2\/§= (1+£v2)2=v2+1.

. We have

152 () = Sl sup 20, = 20,,

|[S1 — S2f| = sup
u#0 [|e]2 u#0

where o, is the Hankel singular value of the truncated state. Thus, by
choosing 6, = V2 — 1, we obtain

151 — Saf| < 2v2 — 2.

Consider a system described by the following transfer function matrix
5+2  s+2
Suggest a suitable transformation for doing decoupled control and provide

the overall structure of the controller. (You do not have to design any specific
controller for the decoupled systems) (2 p)



Solution
We notice that the first output is driven by the difference of the control sig-
nal, the second output is driven by the sum, we can thus make a coordinate
change in the output of our controllers exploiting this information.

u = Fua,
U, = CY,
Uy, = GYs

0.5 0.5}
F =
[—0.5 0.5

. Lo 0]..
— Y = GFU:[”s b | U
s+2

We thus see that this choice of F' completely decouples our system.

a. Design an internal model controller for the system
s—1
P(S) — s+ 2

1
s+4

If you have the possibility to decide the crossover frequency . for the open
loop of any of the subsystems, choose your design parameters such that
w. =2 rad/s. (3 p)

b. Internal model controllers can also be designed by solving a convex opti-
mization problem of the form

min ||T1 + TQ)|

Here T; and Ty can be chosen so that

Ty + ToQ = ( WSS)

1 2 - WTT ’
where S = (I + PC)~! is the sensitivity function and T'= PC(I + PC)~ ! is
the complementary sensitivity function and Wg as well as Wy are weighting
functions. After finding the optimal @, the controller can be obtained as
C = (I — QP)™1Q. Find expressions for T; and T; in terms of a general

process P as well as general weighting functions Wg and Wr.
Hint: Use S+ T = 1! (2 p)

Solution

10



a. By following the recommendations in the book for how to handle non-
minimum phase zeros and how to make Q proper we get

s+2
_ | s+1
Qls) = s+4
As+1
The corresponding controller is given by
s+1—(s—1) 0 -1
= (I — Q(s)P(s))! = s+1 -
C(s) = (I - Q()P() ' Q(s) 0 U 10
As+1
s+1 s+2 s+2
0
_ 2 0 s+1 _ 2 0
N 0 As+1 s+4 0 s+4
As As+1 As
The open-loop transfer function is
-1 _
P(s)C(s) = 1 sid | = ; 1
s+4 As As

If we choose the design parameter 1 = 0.5, the subsystem (2,2) will get the
crossover frequency @, = 2 rad/s.

b. We first solve the controller equation for @, that is
C=(I-QP)'Q
<~ (I-QP)C=Q
— C=Q+QPC
— CI+PO)'=q.

Thus

WSS> _ <WS(I—T)> _ <Ws (1_p0(1+p0)—1)>

T + T = =
1+ 12 <WTT WrT Wr (PC(I + PC)™Y)

~(Mwre )= (0)* Car )@
—_— —

Ty T
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