
1.

a. We are not asked to determine the multiplicity of poles, so it is sufficient to

find the poles of the individual matrix elements. Hence we find the poles

s = −1, s = −5 and s = −2.5.
To find the zeros, we compute the maximal subdeterminant

detG(s) =
∣
∣
∣
∣
∣

2.4
s+1 − 16

s+5
1.8
s+1 − 12

2s+5

∣
∣
∣
∣
∣

= − 28.8

(s+ 1)(2s+ 5) +
28.8

(s+ 1)(s+ 5)

= 28.8 s

(s+ 1)(2s+ 5)(s+ 5)

and find that the only zero is located at s = 0.

b. The matrices are orthogonal as they should, i.e. UUT = VVT = I. Hence
Σ can be computed as

Σ = UTG(0)V =



−0.8 −0.6
−0.6 0.8








2.4 −16/5
1.8 −12/5








−0.6 −0.8
0.8 −0.6





=



5 0

0 0





so the singular values are 5 and 0.

c. The singular vector corresponding to the singular value 5 is the first column

of the matrix V . Hence the input vector with strongest amplification is

u =



−0.6
0.8





This is easily verified by computing

y= G(0)u =



2.4 −16/5
1.8 −12/5








−0.6
0.8



 =



−4
−3





pyp =
√

(−4)2 + (−3)2 = 5

Similarly, the minimal output norm zero is obtained when u equals the

second column of V , i.e.




0

0



 =



2.4 −16/5
1.8 −12/5








−0.8
−0.6





d. From lecture 6, the transfer matrix
∑n
i=1

CiBi
s−pi + D has the realization

ẋ(t) =






p1 I 0

. . .

0 pn I




 x(t) +






B1
...

Bn




u(t)

y(t) = [C1 . . . Cn ] x(t) + Du(t)
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Hence

G(s) =





2.4

s+ 1 − 16

s+ 5
1.8

s+ 1 − 12

2s+ 5





= 1

s+ 1




2.4

1.8





︸ ︷︷ ︸

C1



 1 0





︸ ︷︷ ︸

B1

+ 1

s+ 5




−16
0





︸ ︷︷ ︸

C2



 0 1





︸ ︷︷ ︸

B2

+ 1

s+ 2.5




0

−6





︸ ︷︷ ︸

C3



 0 1





︸ ︷︷ ︸

B3

with p1 = −1, p2 = −5 and p3 = −2.5 this gives the state space realization

ẋ =





−1 0 0

0 −5 0

0 0 −2.5




x +





1 0

0 1

0 1




u

y=



2.4 −16 0

1.8 0 −6



 x

2.

a. We can not construct a dynamic decoupling W(s) that gives G(s)W(s) = I,
since we can not take the inverse of the system matrix due to the time delay.

Hence, we must go for the second best, decoupling at steady state. This is

easily achieved by using the inverse of the static gain, i.e.,

W(s) = G(0)−1 = 1
5

(−1 2

3 −1

)

b.

lim
s→0
sC(s) = I

lim
s→0
[sI + G(s)W(s)sC(s)]−1 =

[

G(0)W(0) lim
s→0
sC(s)

]−1
= I

S(0) = lim
s→0

(

s[sI + G(s)W(s)sC(s)]−1
)

= 0

T(0) = I − S(0) = I

The integrators in C(s) give infinitely high gain at low frequencies, hence
the denominator of S(s) grows near s = 0 to make S(0) = 0. The argument
fails if G(0)W(0) lims→0 sC(s) is singular.

3.

a. The controllability Gramian is the solution to the following equation:

AS+ SAT + BBT = 0
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(

−3 1

1 −1

)(

s1 s2

s2 s3

)

+
(

s1 s2

s2 s3

)(

−3 1

1 −1

)T

+
(

0

1

)(

0

1

)T

=
(

0 0

0 0

)

where the fact that the controllability gramian is symmetric has been used.

Performing the matrix multiplications results in the following linear equa-

tion system:







−6s1 + 2s2 = 0
−4s2 + s1 + s3 = 0
2s2 − 2s3 + 1 = 0

which has the solution







s1 = 1/16
s2 = 3/16
s3 = 11/16

and the controllability Gramian is given by

S = 1

16

(

1 3

3 11

)

The eigenvalues of S are the solutions of the characteristic equation

det (λ I − S) =
∣
∣
∣
∣
∣

λ − 1/16 −3/16
−3/16 λ − 11/16

∣
∣
∣
∣
∣
= (λ− 1

16
)(λ−11

16
)− 9
162

= λ
2−3
4

λ+ 2
162

= 0

which has the solutions

λ = 3
8
±
√
(
3

8

)

− 2

162
= 3
8
±
√
34

16

with numerical values λ1 ( 0.74 and λ2 ( 0.011. The conclusion to draw
from this is that there will be one direction that is much more costly to

control in, namely the eigenvector corresponding to λ2, as λ1 ( 70 ⋅ λ2. (as
the cost to control the system from x(0) = 0 to x(t1) = x1 is bounded from
below by

∫ t1
0
u2dt ≥ xT1 S−1x1)

b. As the system now is balanced, the controllability Gramian will be diago-

nal and the Hankel singular values will be the diagonal elements of the

controllability Gramian. First partition the system matrices as

Abal =
(

A1 A2

A2 A3

)

Bbal =
(

B1

B2

)

Cbal =
(

C1 C2

)

The controllability Gramian is calculated from the following equation
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AbalS+ SATbal + BbalBTbal = 0

Using the fact that S will be diagonal results in

(

A1 A2

A2 A3

)(

s1 0

0 s2

)

+
(

s1 0

0 s2

)(

A1 A2

A2 A3

)T

+
(

B1

B2

)(

B1

B2

)T

=
(

0 0

0 0

)

results in the following linear equation system







2A1s1 + B21 = 0
A2 (s1 + s2) + B1B2 = 0
2A3s2 + B22 = 0

which has the solution







s1 =
−B21
2A1

= 59+ 10
√
34

8
(

14+
√
34
) ( 0.74

s2 =
−B22
2A3

= 9

8
(

54+ 9
√
34
) ( 0.011

This solution fulfills all of the three equations in the equation system.

c. Partition the system as







(

ż1

ż2

)

=
(

A11 A12

A21 A22

)(

z1

z2

)

+
(

B1

B2

)

u

y =
(

C1 C2

)
(

z1

z2

)

The reduced system is then given by (reduction of the second state)
{

ż1 =
(
A11 − A12A−122 A21

)
z1 +

(
B1 − A12A−122 B2

)
u

yr =
(
C1 − C2A−122 A21

)
z1 − C2A−122 B2u

The reduced system is hence given by







ż1 = −2006+ 340
√
34

3366+ 576
√
34
z1 +

187+ 32
√
34

(

18+ 3
√
34
)√

68+ 10
√
34
u

yr = 187+ 32
√
34

(

18+ 3
√
34
)√

68+ 10
√
34
z1 +

34+ 5
√
34

1496+ 256
√
34
u

and with numerical values this becomes

{

ż1 = −0.59z1 + 0.94u
yr = 0.94z1 + 0.021u
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