
Solutions to Exam in FRTN10 Multivariable Control 2018-10-27

1 a. From the block diagram we can easily find that

G(s) =

[ 1
s+1

−2
s+1

3
s+1

3(s−1)
(s+1)(s+3)

]

b. One can immediately see from the block diagram that the system has two poles, one

in −1 and one in −3.

Alternatively, one can calculate all minors and find the least common denominator.

The relevant 1st order subdeterminants are the four non-zero elements

1
s+1

, −2
s+1

, 1
s+1

, 3(s−3)
(s+1)(s+3)

and the 2nd order subdeterminant is

9(s+1)
(s+1)2(s+3)

= 9
(s+1)(s+3)

The least common denominator of all subdeterminants is

p(s) = (s+1)(s+3).

The system therefore has two poles: one in −1 and one in −3.

The maximal minor is the 2nd order subdeterminant 9
(s+1)(s+3) ; the zero polynomial is

just a constant, and therefore the system has no zeros.

c. The transfer function from u1 to y2 is G21(s) =
3

s+1
. To find the variance of y2, we can

either directly calculate

V (y2) =
1

2π

∫

∞

−∞

G(iω)G(−iω)dω =
1

2π

∫

∞

−∞

dω

ω2 +1
=

atan(∞)− atan(−∞)

2π
=

9

2

or introduce the state-space realization (A,B,C,D) = (−1,3,1,0) and solve the Lya-

punov equation for Π =V (y2) as

AΠ+ΠAT +BBT = 0 ⇔ −2Π+9 = 0 ⇔ Π =
9

2

2. From the dimensions given (3 poles/states, 1 input, 2 outputs), the A matrix should

be 3×3, the B matrix 3×1 and the C matrix 2×3. The easiest option is to choose a

system in diagonal form with some stable eigenvalues (LHP poles) on the diagonal,

for example

ẋ =





−1 0 0

0 −2 0

0 0 −3



x+





0

1

1



u

y =

[

1 0 0

0 1 1

]

x

With a zero in the top B element, we immediately see that the first state is not control-

lable. Alternatively we can compute the controllability matrix C = [B AB A2B ]
and note that the first row is all zeros ⇒ not full rank.

1



With y1, we directly measure x1. With y2 = x2 + x3, we can observe both states since

they have different eigenvalues. Alternatively we can compute the observability matrix

O = [CT ATCT (AT )2CT ]T and see that it has full rank. (Any other C matrix that

includes all three states would also work.)

The transfer function has the form N1

s+1
+ N2

s+2
+ N3

s+3
, which is even strictly proper (if

D = 0). Alternatively, we can directly calculate G(s) and verify that it is proper.

3 a. From the block diagram, we have

−QPw+R(F(w− v)−GPw) = v => (I +RF)v = (RF −RGP−QP)w

=> v = (I +RF)−1(RF −RGP−QP)w

=> H = (I +RF)−1(RF −RGP−QP)

b. To be able to conclude stability of the closed-loop system with the Small Gain Theo-

rem, in addition to having a stable ∆i, we should have

‖∆i‖<
1

‖H‖∞

= 1/4

∆2 is not stable, so we can not use Small Gain Theorem for it. The other blocks have

the maximum gains

‖∆1‖= 1/8, ‖∆3‖= 1/2, ‖∆4‖= 1/5

We can hence guarantee stability of the control loop with ∆1 and ∆4.

4 a. Yes. This can be seen in many ways, for instance in that P/(1+PC) approaches zero

for low frequencies, indicating that a constant load disturbance can be rejected. It can

also be seen in the difference at low frequencies between C/(1+PC) and 1/(1+PC).

b. Yes. The maximum sensitivity is smaller than 2, indicating a gain margin of at least 2.

The maximum complementary sensitivity is even smaller, implying robust stability.

c. In the curve for C/(1+PC) we read out the maximum gain ≈ 9.

d. No. The time delay imposes an upper limit of the achievable bandwidth of about

1.6/L = 16 rad/s, and the current bandwidth is only somewhat lower than this.

e. The curve for PCF/(1+PC) shows that the step response will be smooth and well-

damped, with a bandwidth of about 10 rad/s. The process time delay will also show

up in the step response. The static gain is 1.

5 a. Since G is triangular, we immediately know that RGA = I. Alternatively, we can cal-

culate the RGA according to

G(0) =





1 1 0

0 1 2

0 0 −1



 , G(0)−1 =





1 −1 −2

0 1 2

0 0 −1





RGA(G(0)) = G(0) .∗G(0)−T =





1 0 0

0 1 0

0 0 1




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From this, a suitable pairing is input 1 with output 1, input 2 with output 2 and input

3 with output 3.

This is indeed the only reasonable choice. From the transfer matrix we see that y3

is only affected by u3, so that pairing is given. If u3 is used for y3 then u2 has to be

used for y2 since it’s unaffected by u1. This leaves u1 for y1. All other decentralized

schemes would have an output that couldn’t be controlled.

b. For its input pairing, the last output has the transfer function P = 1
s−1

. We can write

out the requirement for first order roll-off as

|T (iω)| ≤
∣

∣

∣

∣

k

iω

∣

∣

∣

∣

⇔
∣

∣

∣

∣

iω

k
T (iω)

∣

∣

∣

∣

≤ 1 ⇔
∥

∥

∥

∥

iω

k
T (iω)

∥

∥

∥

∥

∞

≤ 1

However, we know that the rightmost condition can only be satisfied if | p
k
| ≤ 1 for all

unstable poles p of the process. We have an unstable pole in 1, which gives

1

k
≤ 1

The conclusion is that k cannot be smaller than 1.

6 a. From the block diagram (setting C = 0) we get

P =





0 P0 0 P0

1 P0 0 P0

0 0 1 0





with

Pzω = [0 P0 0 ] Pzu = [P0 ]

Pyω =

[

1 P0 0

0 0 1

]

Pyu =

[

P0

0

]

b. We need to add the error to the output of our model, i.e.

z =

[

x

x− r

]

resulting in

P =











0 P0 0 P0

0 P0 −1 P0

1 P0 0 P0

0 0 1 0











c.

Gcl = Pzω +PzuQPyω

The Youla parametrization is preferred since the closed-loop transfer function then is

linear (actually affine) in the design variable. Without this the resulting optimization

problem is much harder to solve.
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7 a. Noting that A and Q12 are zero matrices and Q2 is the identity results in the following

simplification of the Riccati equation:

Q1 −SBBT S = 0

Setting

S =

[

a c

c b

]

and noting that BBT = I results in the following system of equations:

3 = a2 + c2

1 = b2 + c2

0 = (a+b)c

From the last equation we can conclude that c = 0, since otherwise either a or b needs

to be negative and a positive definite matrix can’t have negative diagonal elements.

This results in

S =

[

√
3 0

0 1

]

and the feedback law is given by

u =−(SB)T x =−
[

0 1√
3 0

]

x

b. The system description with noise is

ẋ =

[

0 1

1 0

]

u+w1

y =

[

1 0

0 1

]

x+w2

where w1 and w2 are two-dimensional white noise processes with intensities R1 =
R2 = I. Since A and R12 are zero and R1, R2 and C are the identity we get the Riccati

equation

I = PP

Setting

P =

[

a c

c b

]

results in

1 = a2 + c2

1 = b2 + c2

0 = (a+b)c
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and with similar reasoning as in the previous question we get

P = I

and the Kalman gain becomes

K = PCT =

[

1 0

0 1

]

And the Kalman filter is given by

˙̂x =−x̂+

[

0 1

1 0

]

u+ y

c. The separation principle for LQG control says that the feedback law we calculated in

the fully observed case still is optimal in the uncertain case.

d. A reasonable suggestion for the source of the high-frequency components would be

high-frequency measurement noise. In order for the Kalman filter to take greater con-

sideration of this noise we need to model it. Therefore, scaling R2 to make it larger

(or scaling R1 to make it smaller) would be a sensible first step in the tuning process.
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