
Solutions to Exam in FRTN10 Multivariable Control 2018-04-06

1 a. The pole polynomial is given by the LCD of the minors of G,

1

s + 1
,

−1

s + 1
,

2s

s + 1
,

2s

s + 2
,

2s(2s + 3)

(s + 1)2(s + 2)

which is (s + 1)2(s + 2). The poles are hence −1 (mult. 2) and −2 (mult. 1).

The zero polynomial is given by the GCD of the maximal minor of G normalized

with the pole polynomial, which is 2s(2s+3)
(s+1)2(s+2)

. The zeros are hence 0 and −1.5

(both mult. 1).

b. We rewrite the transfer matrix as (for instance)

G(s) =

[
1

0

]
[ 1 −1 ]

s + 1
+

[
0

1

]
[ −2 0 ]

s + 1
+

[
0

1

]
[ 0 −4 ]

s + 2
+

[
0 0

2 2

]

from which we get the state-space realization

ẋ =




−1 0 0

0 −1 0

0 0 −2


 x +




1 −1

−2 0

0 −4


 u

y =

[
1 0 0

0 1 1

]
x +

[
0 0

2 2

]
u

c. When the input frequency goes to infinity,

lim
ω→∞

G(iω) =

[
0 0

2 2

]
= D

The given SVD D = UΣV ∗ shows that the maximal singular value is 2
√

2, and
this is by definition the maximum gain. The input direction is given by the

corresponding column vector of V , v =

[ √
2/2

√
2/2

]
.

d. The RGA in stationarity is given by G(0) .∗ G(0)−T , which is not possible
to compute since G(0) =

[
1 −1
0 0

]
is singular. The fundamental problem is the

transmission zero in 0, which makes it impossible to control the system in
stationarity.

e. The transformation corresponds to the coordinate change u1 = ũ1+ũ2, u2 = ũ2,
or, equivalently, W1 = [ 1 1

0 1 ]. The transformed process becomes

PW1 =

[ 1
s+1 0

2s
s+1

2s(2s+3)
(s+1)(s+2)

]

which shows that y1 is only affected by ũ1.
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2. The plant is non-minimum phase and has the poles s = −2 (slowest) and
s = −5. We go for the approach of mirroring the unstable zero before inverting
the system. This results in

Q(s) =
s2 + 7s + 10

(4 + 2s)(λs + 1)n

This choice of Q gives the closed loop static gain P (0)Q(0) = 1. We choose
n = 1 to get a proper Q and a proper controller. Matching the slowest pole,
we choose λ = 0.5, which results in

Q(s) =
s + 5

s + 2

With this particular choice of Q the controller becomes

C(s) =
Q(s)

1 − Q(s)P (s)
=

s2 + 7s + 10

s(s + 6)

The degree of the numerator is not higher than that of the denominator, so
the controller is indeed proper.

3 a. v is a (column) vector of length 2, y is a scalar, and F (s) is a 2 × 1 system
(1 input and 2 outputs).

b. We can use the Small Gain Theorem to guarantee stability if F is stable and
‖F‖ < 1/‖G‖. From the plot we read out ‖G‖ ≈ 2.12, which gives the condition
‖F‖ < 0.47.

c. We can take for instance F (s) =

[
0

−1

]
, which yields the closed loop system

G(s)

1 + G(s)F (s)
=

[
2s(s + 3)

(s + 1)(s − 1)

4

s − 1

]

with an unstable pole in s = 1.

4. We see that PpF has a right-half-plane zero in z = 4, and a right-half-plane
pole in p = 3. In lecture 7, we find the following equation that gives a lower
bound of the maximum value of the sensitivity function

sup
ω

|S(iω)| ≥ p + z

|p − z| = 7

When the sensitivity function is greater than 2–3, the robustness of the con-
troller is too poor to be practically useful. This shows that it is impossible to
achieve good control performance.

5 a. From lecture slide we get the following Riccati equation for LQ problem and
Kalman gain

K = (PCT + NR12)R−1
2 L = Q−1

2 (SB + Q12)T

0 = Q1 + AT S + SA − (SB + Q12)Q−1
2 (SB + Q12)T

0 = NR1NT + AP + PAT − (PCT + NR12)R−1
2 (PCT + NR12)T
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where in this problem we have

A = 1 B = 1 M = 1 N = 1 C = 1 Q12 = 0 R12 = 0

From the LQ Riccati equation one can write

S + S + Q1 − S2/Q2 = 0 => S = Q2(1 +
√

1 + Q1/Q2)

=> L = Q−1
2 S = 1 +

√
1 + q

Similarly for Kalman filter we have

P + P + R1 − P 2/R2 = 0 => P = R2(1 +
√

1 + R1/R2)

=> K = PR−1
2 = 1 +

√
1 + r

Note that P and S cannot take negative values. Since controllers have the form
u = −Lx̂ with d

dt x̂ = x̂ + u + K[y − x̂], and L is a function of q and K is a
function of r, the controller is only a function of r and q.

b. From the lecture slides, the closed-loop dynamics is

d

dt

[
x(t)

x̃(t)

]
=

[
A − BL BL

0 A − KC

] [
x(t)

x̃(t)

]
+

[
Nv1(t)

Nv1(t) − Kv2(t)

]

in this problem, both the plant and the observer have first-order dynamics. We
know that poles of the closed-loop system are the eigenvalues of A − BL and
A − KC. Here we have

A − KC = 1 − (1 +
√

1 + r) = −
√

1 + r

A − BL = 1 − (1 +
√

1 + q) = −
√

1 + q

c. Putting larger penalty on the state variable than the control signal means
Q1 ≫ Q2, as a result we have q ≫ 1, then the proces pole goes farther to the
left (to large negative values), that is the process response is faster (goes faster
to the origin). In the other words, since we get a large q, L would be larger
and it means that we get a larger control signal (In another words, since Q2 is
small, the control signal is allowed to have larger values, so it results in a faster
response). On the other hand, if Q1 ≪ Q2 then q ≪ 1, we are not allowed to
have large control signals (since q ≪ 1, L would be small) and the process pole
approaches −1, that is the process response would be slower compared to the
other case.

d. If we put more trusts on measurements we get R1 ≫ R2, hence r ≫ 1, then
the observer pole goes farther to the left, that is we get a faster convergence
rate for the filter. On the other hand, if we trust the process more than the
measurements, we have R1 ≪ R2 then r ≪ 1, so the observer pole approaches
−1, that is we get slower convergence rate.

6 a. In the balanced realization the observability Gramian and the controllability
Gramian are equal so Sξ = Oξ.
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b. Consider a balanced realization

[ ˙̂
ξ1

˙̂
ξ2

]
=

[
A11 A12

A21 A22

] [
ξ̂1

ξ̂2

]
+

[
B1

B2

]
u , Σ =

[
Σ1 0

0 Σ2

]

y = [ C1 C2 ]

[
ξ̂1

ξ̂2

]
+ Du

where Σ2 corresponds to the small Hankel singular values. Replacing the second

state equation by
˙̂
ξ2 = 0, gives the reduced system below

˙̂
ξ1 = (A11 − A12A−1

22 A21)ξ̂1 + (B1 − A12A−1
22 B2)u

yred = (C1 − C2A−1
22 A21)ξ̂1 + (D − C2A−1

22 B2)u

after carrying out some calculations, we get

˙̂
ξ1 = −0.448 ξ̂1 + [ −0.873 −2.45 ] u

yred =

[
−0.350

−2.58

]
ξ̂1 +

[
0.317 0.330

−0.0354 −0.897

]
u

c. No, since ξ2 and ξ3 has almost the same influence which is small in comparison
to the influence of the first state it should not make a big difference if you
remove both.
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