
Solutions to Exam in FRTN10 Multivariable Control 2017-10-27

1 a. The minors are easily found as

1

(s+2)(s+3)
,

1

(s+3)(s+4)
,

1

(s+2)(s+4)

Rewrite them with the least common denominator:

s+4

(s+2)(s+3)(s+4)
,

s+2

(s+2)(s+3)(s+4)
,

s+3

(s+2)(s+3)(s+4)

It’s clear from this that the poles are given by −2, −3, and −4, all with multiplicity 1.

The zeros are given by the nominators’ greatest common divisor, which here is 1. The

system therefore has no zeros.

b. Do a partial fraction decomposition of the entries of G:

G(s) =

[
1

s+2
− 1

s+3

1

s+3
− 1

s+4

1
2

s+2
−

1
2

s+4

]

Separate the terms according to the poles:

G(s) =
[1 0 1

2
]

s+2
+

[−1 1 0 ]

s+3
+

[0 −1 − 1
2
]

s+4

The matrices are trivially subdivided as (for instance)

G(s) =
[1] [1 0 1

2
]

s+2
+

[1] [−1 1 0 ]

s+3
+

[1] [0 −1 − 1
2
]

s+4

A minimal state-space realization is now given by (for instance)

ẋ(t) =



−2 0 0

0 −3 0

0 0 −4


x(t)+




1 0 1
2

−1 1 0

0 −1 − 1
2


u(t)

y(t) = [1 1 1 ]x(t)

2. P3 has an unstable zero in 0.2, which means that the closed-loop bandwidth cannot be

greater than 0.2 rad/s. This corresponds to step response D, which is both very slow

and has inverse initial response. It also corresponds to sensitivity plot I, which has a

bandwidth of approx. 0.2 rad/s.

P4 has an unstable pole in 10, which means that the closed-loop bandwidth cannot be

smaller than 10 rad/s. The corresponds to step response B, which has a time constant

in the order of 0.1. It also corresponds to sensitivity plot III, which has a bandwidth

higher than 10 rad/s.

P2 has a time delay of 1 second, which limits the closed-loop bandwidth to approx.

1 rad/s. The time delay is clearly visible in step response A. The step response has an

overshoot, which corresponds to the resonance peak in T visible in sensitivity plot IV.

P1 does not have any fundamental limitations, so it could have any closed-loop band-

width and characteristics, depending on the controller. The only remaining diagrams

are C and II, that correspond well together, with a time constant of approx. 1 s and a

bandwidth of approx. 1 rad/s.
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3. We want the system to behave like a diagonal system yd = P̃ud in stationarity with

the controller ud = −Cdyd . This means we want to find some constant coordinate

transformations, W1 and W2, such that P̃(0) =W2P(0)W1.

For simplicity we choose W1 = I and W2 is chosen to fulfill P̃(0) =W2P(0). Since

P(0)−1 =
1

6− 1
9

[
3 − 1

3

− 1
3

2

]

we choose

W2 =

[
9 −1

−1 6

]

to get nice whole numbers to use. This gives

C =W1CdW2 =




9K1

sT1 +1

sT1

−K2

sT2 +1

sT2

−K1
sT1 +1

sT1

6K2
sT2 +1

sT2




4 a. The gain of the system equals the maximum of the largest singular value of P(iω).
From the plot in Figure 3 we see that the gain is approximately 1.14.

b. We have that

P(1i) =
1

i2 +4i+5

[
i2 +3i+4 −(i+3)

(i+3) i2 +3i+4

]
=

1

4+4i

[
3+3i −(3+ i)

3+ i 3+3i

]

=
1− i

8

[
3+3i −(3+ i)

3+ i 3+3i

]
=

[
0.75 −0.5+0.25i

0.5−0.25i 0.75

]

The middle singular value decomposition that was given matches this. The smallest

amplification in L2 norm at this frequency is given by the smallest singular value,

which we see is 0.71.

The right singular vector corresponding to the smallest singular value is given by the

second column of V (not V ∗ !), this is the conjugate of the second row of the last ma-

trix in the singular-value decomposition, i.e., [−0.71 −0.71i ]. (Recall that the sin-

gular value decomposition is given by A =UΣV ∗.) This singular vector corresponds

a vector-valued, sinusoidal signal where the phase of the second component is 90◦

ahead of the first component, i.e., we could for example take

u(t) =

[
0.71sin t

0.71sin(t +π/2)

]

(or any scaled/phase-shifted version of this).

5 a. From the block diagram, we have

HF(u− v)+KPv = u ⇒ u = (I −HF)−1(KP−HF)v

⇒ G = (I −HF)−1(KP−HF).
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b. To be able to use the small gain theorem to conclude that a certain ∆i gives a stable

closed-loop system, we must have that ∆i is stable and that

||∆i||<
1

||G||
∞

=
1

2
.

It is clear that we obtain the largest value |∆1(iω)| → 1/5 as ω → 0, and since ∆1,

also is stable, we can conclude closed-loop stability in this case.

The magnitude of |∆2(iω)| → 1 as ω → ∞, so the Small Gain Theorem cannot be used

to conclude stability in this case.

Neither ∆3, nor ∆4 are stable, so the Small Gain Theorem is not applicable in these

cases.

In summary, the Small Gain Theorem can be used to guarantee stability only for the

feedback interconnection with ∆1.

c. The small gain theorem only gives a sufficient condition for closed-loop stability. Thus

it is not possible to conclude that any of the uncertainty blocks gives an unstable

closed-loop system. Even open-loop unstable systems can lead to stable closed-loop

systems.

6 a. Let S =

[
s1 s2

s2 s3

]
be the solution to the Riccati equation

AT S+SA− (SB)Q−1
2 BT S+Q1 = 0

where

Q1 =CCT =

[
0 0

0 1

]
, Q2 = 1.

The minimal cost of Ja is then given by

xT
0 Sx0 = [0 1 ]S

[
0

1

]
= s3.

Writing out the Riccati equation we get

[−0.5 1

−1 0

]
S+S

[−0.5 −1

1 0

]
−
(

S

[
1

0

])
·1 · [1 0 ]S+

[
0 0

0 3

]
= 0,

and with S =

[
s1 s2

s2 s3

]
,

[−0.5s1 + s2 −0.5s2 + s3

−s1 −s2

]
+

[−0.5s1 + s2 −s1

−0.5s2 + s3 −s2

]
−
[

s2
1 s1s2

s1s2 s2
2

]
+

[
0 0

0 3

]
= 0

⇔
[ −s1 +2s2 − s2

1 −0.5s2 + s3 − s1 − s1s2

−0.5s2 + s3 − s1 − s1s2 −s2
2 −2s2 +3

]
= 0

from this we see that s2
2−2s2+3= 0, so s2 = 1 (we are looking for the positive definite

solution of the Riccati equation). From −s1+2s2 − s2
1, we get (using s2 = 1) that s1 =

1. Finally, from −0.5s2 + s3 − s1 − s1s2 = 0, we get that s3 = 0.5s2 + s1 + s1s2 = 5/2.

Thus, the minimal value of Ja is 5/2.
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b. The controllability Gramian Wc can be found by solving the Lyapunov equation

AWc +WcAT +BBT = 0

which reads

[−0.5 −1

1 0

][
w1 w2

w2 w3

]
+

[
w1 w2

w2 w3

][−0.5 1

−1 0

]
+

[
1

0

]
[1 0 ] =

[
0 0

0 0

]

⇔
[ −w1 −2w2 +1 w1 −0.5w2 −w3

w1 −0.5w2 −w3 2w2

]
=

[
0 0

0 0

]

Solving for Wc, gives

Wc =

[
w1 w2

w2 w3

]
=

[
1 0

0 1

]

From Lecture 6 we get that

Jb =
∫

∞

0
u(t)2 dt ≥ xT

1 W−1
c x1 = [0 1 ]W−1

c

[
0

1

]
= 1.

c. The spectrum can be factorized as

Φd(ω) = H(iω)H(−iω)

with

H(s) =
2

s+0.1
.

Thus

D =
2

s+0.1
V

gives (for instance) the state-space realization

ḋ =−0.1d +2v.

Augmenting the state-space description with this noise model gives

A=



−0.5 −1 1

1 0 0

0 0 −0.1


 , Bu =




1

0

0


 , Bv =




0

0

2


 , C = [0

√
3 0 ] , D= 0

7 a. The closed-loop transfer function from w =

(
r

d

)
to z =

(
y

u

)
is

Gzw =




PCF

1+PC

P

1+PC

CF

1+PC
− PC

1+PC




b. Setting Q =
C

1+PC
and using the fact that

P

1+PC
= PS = P(1− T ), this can be

written

Gzw =

(
PFQ P(1−PQ)

FQ −PQ

)

This is an affine expression in Q.
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c. The closed-loop transfer function from r to u, setting F = 1, is

Gur =
C

1+PC
= Q

Setting Q = q0 +
q1

s+1
, the requirement on |Gur(i)| is given by

∣∣∣∣q0 +
q1

i+1

∣∣∣∣≤ 2

|q0i+q0 +q1|
|i+1| ≤ 2

|q0i+q0 +q1|2 ≤ 8

q2
0 +(q0 +q1)

2 ≤ 8

This is a quadratic constraint on q0 and q1.
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