
Department of

AUTOMATIC CONTROL

FRTN10 Multivariable Control

Exam 2017-01-03, 08:00–13:00

Points and grades
All answers must include a clear motivation and a well-formulated answer. Answers
may be given in English or Swedish. The total number of points is 25. The maximum
number of points is specified for each subproblem.

Accepted aid
The textbook Glad & Ljung, standard mathematical tables like TEFYMA, an au-
thorized “Formelsamling i Reglerteknik”/”Collection of Formulas” and a pocket cal-
culator. Handouts of lecture notes and lecture slides (including markings/notes) are
also allowed.

Results
The result of the exam will be entered into LADOK. The solutions will be available
on the course home page: http://www.control.lth.se/course/FRTN10
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Solution to Exam in FRTN10 Multivariable Control 2016-10-25

1. Consider the following system:

G(s) =


2

(s+ 10)(s+ 1)
1

s+ 1
2

s+ 2
1

s+ 2


a. Determine the poles and zeros of the system, including their multiplicity.

(2 p)

b. Write the system in state-space form using a minimal number of state variables.
(1.5 p)

c. Compute the RGA of the system in stationarity. Which inputs should be paired
with which outputs in a decentralized control design? (1.5 p)

Solution

a. The poles are determined by the smallest common denominator of the sub-
determinants of G(s). The sub-determinants are:

2
(s+ 10)(s+ 1) ,

1
s+ 1 ,

2
s+ 2 ,

1
s+ 2 ,

−2(s+ 9)
(s+ 10)(s+ 1)(s+ 2)

Where the first four are the 1 × 1 sub-determinants of G(s) and the last one
is the full 2 × 2 determinant. The smallest common denominator among the
sub-determinants is (s + 1)(s + 2)(s + 10), and the poles are thus located in
−1,−2 and −10.

The zeros are determined by the largest common divisor of the nominators
of the largest sub-determinants, normalized with the pole polynomial in the
denominator. The largest sub-determinant in this case is the full determinant
of G(s), and since it is already has the pole polynomial as its denominator we
immediately see that the process has a zero in −9.

b. We start by dividing G(s) into separate terms using partial fraction decompo-
sition, and then subdividing the matrix:

G(s) =

 − 2
9

s+10 +
2
9

s+1
1

s+1
2

s+2
1

s+2

 = 1
s+ 1

[ 2
9 1
0 0

]
+ 1
s+ 2

[
0 0
2 1

]
+ 1
s+ 10

[
−2

9 0
0 0

]

= 1
s+ 1

[
1
0

]
[ 2

9 1 ] + 1
s+ 2

[
0
1

]
[ 2 1 ] + 1

s+ 10

[
1
0

]
[−2

9 0 ]

From this form it is straight-forward to obtain a diagonal state-space represen-
tation of the system (see notes from lecture 6):

ẋ(t) =

−1 0 0
0 −2 0
0 0 −10

x(t) +


2
9 1
2 1
−2

9 0

u(t)

y(t) =
[

1 0 1
0 1 0

]
x(t)
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c. We have:

G(0) =
[ 1

5 1
1 1

2

]
G(0)−1 = −10

9

[ 1
2 −1
−1 1

5

]

which gives the RGA:

RGA(G(0)) = G(0). ∗G(0)−T =
[
−1

9
10
9

10
9 −10

9

]

Since we should avoid pairing of inputs and outputs which will result in negative
diagonal elements in RGA(G(0)), the RGA matrix suggests that we should pair
u1–y2 and u2–y1.

2. Design an Internal Model Controller for the process

P (s) = s+ 1
(0.1s+ 1)3

Place the poles of the closed-loop system in the same location as the open-loop
poles. Will the closed-loop system be able to follow a constant reference signal
without stationary error? (3 p)

Solution
We can select e.g.

Q(s) = P−1(s)
(0.1s+ 1)2 = 0.1s+ 1

s+ 1
This gives the closed-loop system

Q(s)P (s) = 1
(0.1s+ 1)2

which has the same poles as the open-loop system. The controller is then given
by

C(s) = Q(s)
1−Q(s)P (s) =

0.1s+1
s+1

1− 1
(0.1s+1)2

= 0.1(s+ 10)3

s(s+ 1)(s+ 20)

The controller has a pole in 0, i.e., an integrator, so the closed-loop system will
be able to follow a constant reference signal without error.

KF
∑1

s+ 1

x y x̂v1

v2

Figure 1 An open-loop system.

3. Consider the open-loop system in Figure 1. You should design the Kalman
filter KF such that x̂ is an optimal estimate of x. v1 and v2 are zero-mean
white noise processes with intensities R1 = 6 and R2 = 1 respectively, and
their cross-intensity is R12 = 1.
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a. Show that the transfer function of the resulting Kalman filter is 2
s+3 . (2 p)

b. Calculate the stationary variance of x and the spectral density of x. (2 p)

Solution

a. A state-space realization of the process is given by

ẋ = −x+ v1

y = x+ v2

from which we identify A = −1, N = C = 1. The Kalman filter is given by

˙̂x = Ax̂+K(y − Cx̂)

where K = (PC + NR12)/R2, where P > 0 is given by the solution to the
Riccati equation

2AP +R1 − (PC +R12)2/R2 = 0

We obtain

(P + 1)2 + 2P − 6 = 0 ⇒ P = 1 ⇒ K = 2

Taking the Laplace transform of the Kalman filter equation and solving for X̂
we obtain

X̂(s) = 2
s+ 3Y (s)

b. Let π = Ex2. We have the Lyapunov equation

−1 · π − π · 1 + 6 = 0

with the solution π = 3. The variance of x is hence 3.
The spectral density of x is given by

φx(ω) = R1
1

1 + iω

1
1− iω = 6

1 + ω2

4. A cascade control system is shown in the block diagram in Figure 2. We want
to isolate the uncertainty as shown in Figure 3.

a. Find the transfer function G from n to u2 expressed in terms of C1, C2, P1, P2
and F . (1 p)

b. The step response and the singular value plot of G are shown in Figures 4 and 5.
For which of the following ∆(s) can you guarantee stability of the closed-loop
system using the Small Gain Theorem?

• ∆1(s) = 2
s+ 5

• ∆2(s) = 0.8

• ∆3(s) = 0.3s+ 1
s+ 1
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P2P1C1

∆(s) F

∑
C2

∑u2 u1 y1 y2 y

−1

−1

n

Figure 2 Block diagram for the system in Problem 4.

∆(s)

G∆(s)

Figure 3 Desired block diagram for the system in Problem 4.

(1.5 p)

c. Is it possible that all of ∆1(s), ∆2(s) and ∆3(s) can actually result in stable
closed-loop systems? Motivate your answer. (0.5 p)

Solution

0 2 4 6 8 10 12 14 16 18 20 22 240.0

0.5

1.0

1.5

2.0

t

u
2(
t)

Figure 4 Step response of G.
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Figure 5 Singular value plot of G

a. To simplify we can look at some small parts first:

u2 = −C2y

y = Fn+ P2y1

y1 = P1C1
1 + P1C1

u2

Putting this together we get

u2 = (1 + P1C1)C2F

1 + P1C1(1 + P2C2)n⇒ G = (1 + P1C1)C2F

1 + P1C1(1 + P2C2)

b. As can be seen in the step response, G is stable, and from the sigma plot we see
from the maximum singular value is ‖G‖∞ = 2. According to the Small Gain
Theorem we can then guarantee stability for all ∆(s) such that ‖∆(s)‖∞ <
1/2. Since ‖∆1(s)‖ = 0.4, stability can be guaranteed for that one. However,
‖∆2(s)‖∞ = 0.8 and ‖∆3(s)‖∞ = 1 so stability can not be guaranteed for
those.

c. Yes. It is possible that also ∆2(s) and ∆3(s) could result in a stable closed
loop, since the Small Gain Theorem is conservative.

5. You want to design an optimal controller that minimizes the cost function

J =
∫ (

yT (t)Q1y(t) + uT (t)Q2u(t)
)
dt

with the weight matrices Q1 =
(

10 0
0 1

)
and Q2 = 1.

a. How many inputs u and outputs y does the system have? (0.5 p)

b. Explain in words how the closed-loop system behavior would change if the

weight matrices were instead set to Q∗1 =
(

1 0
0 0.1

)
and Q∗2 = 1. (0.5 p)
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c. The process is given by

ẋ =
(

0 1
0 0

)
x+

(
0√
10

)
u

y = x

Design a state feedback law u = −Lx that minimizes the cost function with
the weight matrices Q1 and Q2. (1.5 p)

d. The result from subproblem c gives an optimal controller. But as you hopefully
know, “optimal” is not the same as “good”; it depends on whether the cost
function has been chosen wisely. With the given cost function, could you at
least guarantee that the obtained closed-loop system will be stable? Motivate!

(0.5 p)

Solution

a. The dimensions of Q1 and Q2 give that the system has one input and two
outputs.

b. The relation between the first and second output are unchanged; it’s just a
scaling factor. The punishment on the control signal is however much higher
with the starred weight matrices, so the control signal will be smaller.

c. The state feedback vector L = Q−1
2 BTS where S is the positive semidefinite

solution to the Riccati equation ATS + SA + CTQ1C − SBQ−1
2 BTS = 0.

Putting in the system matrices we end up with the equation system

10− 10s2 = 0
s1 − 10s2s3 = 0
2s2 + 1 + 10s3 = 0

which gives

S =
(

10
√

3/10 1
1

√
3/10

)
and L = (

√
10
√

3 )

d. Yes we can! The LQ technique that we used always guarantees a stable system
with a phase margin of at least 60 degrees. (If it would have been an LQG
controller we could however not give this kind of guarantee.)

6. You have been given the task to design an optimal controller C(s) for a sta-
ble, single-input–single-output system P (s), assuming a standard 1-degree-of-
freedom controller structure. The controller should minimize the integrated
error of the output signal yrefstep due to a reference step,∫ ∞

0
|yrefstep|dt.

subject to the following constraints,

1. The system should be robust to process variations, i.e. |S(iω)| ≤ 1.5.
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2. The impact of measurement noise on the control signal should be limited,
i.e. supω |Gun(iω)| ≤ 30.

3. There should be less than 2% overshoot in the process output signal due
to a reference step.

4. The control signal due to a reference step should be within [−10, 10].

Since the plant is SISO and stable, the Youla parametrization

Q = C/(1 + PC), (1)

has been chosen. For example, the following shows the affine relation between
S and Q:

S = 1
1 + PC

= 1− PC

1 + PC
= 1− PQ

A suitable finite basis {Qk}50
k=1 for the parametrization of Q was selected, and

step responses and frequency responses for {Qk}, {PQk} were computed for
the different basis functions at suitably chosen time points {t1, t2, . . . , tN} and
frequency points {ω1, ω2, . . . , ωM}.
The results are have been stored in the Matlab variables Q_sr, Q_fr, PQ_sr
and PQ_fr, where the columns correspond to different basis functions Qk and
the rows correspond to different time/frequency points. The variable b selects
how much to use of each basis function, i.e. Q =

∑
Qkbk.

Before falling asleep in front of the computer last night, you had started to
code up the problem in cvx and had managed to specify the cost function and
first constraint. The code that you woke up to was

M_s = 1.5;
max_overshoot = 1.02;
CS_max = 30;
umax = 10;

cvx_begin
variable b(50)

minimize sum( abs(ones(N,1) - PQ_sr*b ) )

subject to:
% 1. Maximum sensitivity constraint
max(abs(1 - PQ_fr*b)) <= M_s;

% 2. Constraint on transfer functionnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

cvx_end

a. What is the missing code, required to enforce the constraints 2–4? You do not
have to get the cvx/Matlab syntax exactly right. (2 p)

b. The convex optimization approach discussed in this problem makes it very easy
to design controllers which are very close to optimal, for a wide range of dif-
ferent objective functions and constraints. Give one reason why the controllers
designed with this method can be problematic for real-world implementation.

(0.5 p)
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Figure 6 Two-degree-of-freedom controller structure for problem .

Solution

a. The missing lines should be along the lines of

% Constraint on transfer function n -> u
abs(Q_fr*b) <= CS_max

% Constraint on overshoot in y from reference step
PQ_sr*b <= max_overshoot;

% Constraint on control signal u for reference step
-umax <= Q_sr*b <= umax;

b. Either of the following answers are acceptable:

1. The controllers can have very high order, which makes it computationally
expensive and numerically challenging to implement them.

2. The designed controllers can be unstable which is not desirable in real-
world applications.

7. Let’s do some loop shaping! The process is given by

P (s) = e−s

(s+ 1)(s+ 2) ,

and the two-degree-of-freedom controller structure in Figure 6 is used to control
it.
Your colleague has already designed a PID controller

C1(s) = 1 + 0.2
s

+ 0.2s.

The gang of four for this controller is plotted in Figure 7 and the effect of a
step disturbance and measurement noise is plotted in Figure 8.

a. Mention one significant advantage of loop shaping compared to LQG when
doing control design for single-input–single-output systems. (0.5 p)

b. As seen in Figure 8 there is significant control signal activity due to measure-
ment noise. Why is this typically bad? How should you change the controller
to reduce the impact of measurement noise on the control signal? (1 p)

c. As seen in Figure 8, a step disturbance in d is attenuated too slowly. How
should you change the controller so that the disturbances are rejected faster?
Mention two alternatives. (1 p)
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d. Can you conclude only from Figure 7 that the closed-loop system is stable?
Motivate your answer. (0.5 p)

e. Is it typically best to design the controller C or the prefilter F first? Motivate!
(0.5 p)

f. One way to design the prefilter F is to choose

F = 1 + PC

PC(1 + sTf )d

where d is chosen large enough to make F proper. Why will this approach not
work in our case? How could the approach be modified to make it work? (1 p)

Solution

a. It is easier to take closed loop robustness into account when doing loop shaping,
when doing LQG design there are no robustness guarantees.

b. High control signal activity tends to wear out the actuator or make actuator
nonlinearities more noticeable. To reduce the impact of the measurement noise
on the control signal, a low pass filter should be added to the controller.

c. To increase the speed for which load disturbances are rejected there are a few
different options: increase the integral action, add a lag filter at low frequencies,
or increase the controller gain/system bandwidth.
If we increase the integral action and add a low pass filter we get the following
controller

C2(s) =
(

1 + 0.8
s

+ 0.2s
)/

(s/10 + 1)2.
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Figure 7 Gang of four for Problem .
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Figure 8 Effect of a step disturbance on the measured signal y and effect of white mea-
surement noise on the control signal u, for Problem .

The gang of four and the time-domain responses for the improved controller
are shown in Figures 9 and 10.

d. It is not possible to conclude stability of the closed loop system only from the
magnitude plots in the gang of four. For example the magnitude plots of the
unstable system 1/(s− 1) and the stable system 1/(s+ 1) are the same.

e. The design of F does not impact robustness and disturbance rejection, so
it is typically best to first design the controller C for good robustness and
disturbance rejection, and then design the prefilter F for a good reference step
response. If F would have been design first, the design of C would affect both
robustness, disturbance rejection and the reference step response, which would
have made things more complicated.

f. Since the plant has a time delay, 1+P C
P C will not be causal, and this cannot be

helped by increasing d. To remedy the problem, the delay must be included in
F , e.g.

F = (1 + PC)e−s

PC(1 + sTf )d
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Figure 9 Gang of four for the system in Problem . The blue dashed line is for the original
controller C1(s) and the red solid line is for the improved controller C2(s).
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Figure 10 Effect of a step disturbance on the measured signal y and effect of white
measurement noise on the control signal u, for Problem . The blue dashed line is for the
original controller C1(s) and the red solid line is for the improved controller C2(s).
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