
Department of

AUTOMATIC CONTROL

FRTN10 Multivariable Control

Exam 2015-01-09

Points and grades

All answers must include a clear motivation and a well-formulated answer. An-

swers may be given in English or Swedish. The total number of points is 25. The

maximum number of points is specified for each subproblem.

Accepted aid

The textbook Glad & Ljung, standard mathematical tables like TEFYMA, an au-

thorized “Formelsamling i Reglerteknik”/”Collection of Formulas” and a pocket
calculator. Handouts of lecture notes and lecture slides are also allowed.

Results

The results will be reported via LADOK.
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Figure 1 Setup for the system in problem 1.

1. A multivariable system is given by

G(s) =





G11 G12

G21 0

0 G32





a. Draw a block diagram for G(s) showing the connections between each input
and each output. (1 p)

b. The system is connected to an unknown function ∆(s) as described in Figure
1. Some plots for G(s) are shown in Figure 2. What restrictions do you need
to impose on the function ∆(s) to ensure that the closed-loop system will be
stable, according to the Small Gain Theorem? (1 p)

Solution

a. The connections between inputs and outputs are shown in Figure 3.

b. Since the maximum value in the singular value plot is three, we know

from the small gain theorem that the closed loop system will be stable if

pp∆pp∞ < 1/3.

2. A system is given by the state equations

ẋ(t) =

(

−3 0

0 −5

)

x(t) +

(

3/2 0 3

−1/2 1 0

)

u(t)

y(t) = ( 1 1 ) x(t) + ( 0 1 1 )u(t).

a. How many inputs, outputs and states does the system have? (1 p)

b. Find a transfer function for the system. (2 p)

c. What are the poles and zeros of the multivariable system? (2 p)

Solution

a. By looking at the dimensions of the matrices we can conclude that we have

three inputs u = (u1 u2 u3)
T , one output y = y1 and two states x = (x1 x2)

T .
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Figure 2 Some different plots for the system G(s) in problem 1.
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Figure 3 Connections between inputs and outputs in problem 1.

b. The transfer function of the system is given by G(s) = C(sI − A)−1B + D.

G(s) = (1 1 )

(

1
s+3 0

0 1
s+5

)

(

3/2 0 3

−1/2 1 0

)

+ ( 0 1 1 )

= ( 1
s+3

1
s+5 )

(

3/2 0 3

−1/2 1 0

)

+ ( 0 1 1 )

=
(

3/2
s+3 −

1/2
s+5

1
s+5 + 1

3
s+3 + 1

)

=
( s+6
(s+3)(s+5)

s+6
s+5

s+6
s+3

)

c. The poles to the system are -3 and -5 as can be seen already in the state-

space formulation. The system zeros are given by looking at the greatest

common divisor of the numerators of the maximal minors of G(s), normal-
ized so that you have the pole polynomial in the denominator. The maximal

minors are
s+ 6

(s+ 3)(s+ 5)
,
(s+ 6)(s+ 5)

(s+ 3)(s+ 5)
and

(s+ 3)(s+ 6)

(s+ 3)(s+ 5)
and they have

the common divisor s+6 which means that we have a system zero in s = −6.

3. Your boss gives you what he claims are RGA matrices in stationarity for

three different systems S1, S2 and S3 that are all important to your firm.

For each of the systems, check if the matrix is a valid RGA matrix, and

describe if and how you would use the given information to design your

controller structure.

RGA(S1) =

(

0.55 0.45

0.45 0.55

)

RGA(S2) =

(

−1 2

2 −1

)

RGA(S3) =

(

1.2 0.1

0.1 1.2

)

(2 p)
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Figure 4 System description for problem 4.

Solution

For S1 the best pairing is to have the first input controlling the first output.

However, since the values are so alike it is probably not a good idea to use

RGA pairing for this system. For S2 you would instead like to control the

first output with the second input. The matrix given for S3 is clearly not

an RGA matrix since the rows and columns do not sum to 1, therefore you

wouldn’t use that one to make any decisions about controller design at all.

4. You want to find a controller for your stable process P by using some convex

optimization tool. The closed loop system is shown in Figure 4 where

z =

(

e

u

)

, w =





r

d

n



 , y =

(

r

x + n

)

and e,u, r,d,n, x are all scalars. Your aim is to minimize the cost function

J =

∫ ∞

0

α e2(t) + βu2(t)dt

under the restriction that the closed loop system should be stable. The

closed loop has the Youla parametrization Hzw = Pzw+PzuQPyw, where you
need to find Q to satisfy your constraints and optimize your cost function.

a. For the following matrices, motivate which ones (if any) are feasible Q-
matrices.

Q1 =
1
s+1 , Q2 = (

1
s+1

1
s+3 ) , Q3 =

(

1
s+1 0

0 1
s−3

)

,

Q4 =

(

2
s+1

1
s+3

)

, Q5 = (
1
s−1

1
s+1 ) , Q6 =

(

1
s+1 1

1
s+2

1
s+3

)

.

(1 p)

b. You might want to add some additional constraints to your optimization

problem. Which of the following constraints could you add and still have a

convex optimization problem? Here fi(Q), i = 1, 2, 3 denotes different affine
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functions of Q.
I) pp f1(Q)pp∞ ≤ α 1

I I) pp f2(Q)pp2 ≥ α 2

I I I) f1(Q) + f2(Q) = β 1

IV ) pp f1(Q) + f3(Q)pp = β 2

V ) logu = β 3

(1 p)

Solution

a. From the equation for Hzw and knowing the dimensions of u and y we can

conclude that the dimension of Q must be [1x2], that excludes all matrices
except Q2 and Q5. Since the closed loop system should be stable we also

know that Q must be stable, hence the only feasible matrix in this set of

Q-matrices is Q2.

b. A convex optimization problem can have constraints on the form

�i(x) ≤ 0

hi(x) = 0

where the functions �i(x) must be convex, and the functions hi(x) must be
affine.

I) OKAY since norms are convex.
II) NOT OKAY since we can not have constraints on the form convex ≥
something.

III) OKAY since the sum of two affine functions is still affine.
IV) NOT OKAY since the norm is not an affine function and can not be in
an equality constraint.

V) NOT OKAY since log u is a concave (not affine) function and can not be
in an equality constraint.

5. Consider the process

P(s) =
1

s−α
where α > 0. You want to stabilize the system by using a controller con-
nected as shown in figure 5.

a. Your lazy friend wants to use the controller C(s) = (s−α ) to get rid of the
unstable pole. Give two reasons to why this is not a good idea. (1 p)

b. Find the parameters of a PI controller on the form

C(s) =
K (sTi + 1)

sTi

that stabilizes the system. (1 p)

c. In addition to making the system stable you would also like to reduce the

sensitivity to disturbances and measurement noise. Therefore you would

like the transfer function from noise n to process output z, as well as the

transfer function from the disturbance v to z to always have absolute values

smaller than 1/2. Will this be possible? Motivate your answer. (1 p)
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Figure 5 System in problem 5

Solution

a. The controller is not proper and can not be realized. Pole-zero cancellations

of unstable poles are never a good idea. It might look good on the transfer

function from r to z but will for example still be unstable for the transfer

function from d to z.

b. The closed loop system is given by Gcl =
PC

1+ PC
. Since PC =

K (sT1 + 1)

(s−α )sTi
the characteristic polynomial will be

s2Ti + (K −α )Tis+ K = 0[ s
2 + (K −α )s+ K/Ti = 0.

This gives the stability conditions K > α and Ti > 0.

c. No, it will not be possible. The transfer function from n to z is

Gzn =
−PC

1+ PC
= −T

and the transfer function from v to z is

Gzv =
1

1+ PC
= S

and as we know the sum of S+ T = 1. This implies that they can not both
have an absolute value below 1/2 at the same frequency since S+T = 1[
pS + T p = 1 and pS+ T p ≤ pSp + pT p.

6. A system is given by

ẋ(t) = −2x(t) + u(t) + v1(t)

y(t) = x(t) +w(t)

where w(t) is low-pass filtered white noise,

w(t) =
1

s+ 1
v2(t).

(Note that this is not very common since measurement noise is usually
modeled to be mainly high frequent.) The intensity of v2 is R2 = 5, while
v1(t) is white noise with intensity R1 = 1.
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a. Extend the state-space model to include the noise dynamics. (2 p)

b. Find the control law that minimizes the cost function

∫ ∞

0

5x(t)2 + u(t)2dt.

(2 p)

Solution

a. w(t) =
1

s+ 1
v2(t) gives ẇ+ w = v2. By extending the state vector with the

new state w to xe(t) = (x(t),w(t))
T we get

ẋe =

(

−2 0

0 −1

)

xe +

(

1

0

)

u+

(

1

0

)

v1 +

(

0

1

)

v2

y = (1 1 ) xe

.

b. The minimizing control law is given by u = −Lx where L = Q−12 B
TS.

S is given as the symmetric, positive semi-definite solution to the Riccati

equation

ATS+ SA+ Q1 − SBQ
−1
2 B

TS = 0.

Considering the extended system from a) the cost function tells us that

Q1 =

(

5 0

0 0

)

and Q2 = 1. Calculations give S =

(

1 0

0 0

)

and L = (1 0 ).

This gives the control law u(t) = −x(t).

7. A margin plot of a process is given in figure 6. Your task is to add controllers

and/or filters in order to satisfy the following specifications

• There should be no stationary error for a step change in the reference

• The cross-over frequency should stay (approximately) the same

• You should have a phase margin of at least 35○.

To your help you have the controllers/filters F1 − F8 shown in Figure 7.

a. Combine the Bode diagram of each of the filters plotted in solid lines (i.e.
F1, F3, F5, F7) with its corresponding transfer function C1 − C6.

C1(s) =
s/10+ 1

s+ 1
, C2(s) = 0.5

s+ 1

s
, C3(s) =

s/0.05+ 1

s+ 1
,

C4(s) =
s

s+ 1
, C5(s) =

1

s+ 1
, C6(s) =

1

(s+ 1)2
.

(2 p)

b. Find a combination of the filters F1 − F8 that satisfies the constraints on
your process. Note that you can choose from both the filters shown in solid

lines and dashed lines, however, don’t use more filters than necessary. Be

sure to motivate that all constraints are satisfied. (2 p)
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Figure 6 Margin plot of the process in problem 7

Solution

a. The solid line filters are given by the following transfer functions

F1 − C2

F3 − C1

F5 − C5

F7 − C3

b. By adding the filters F2 and F8 all the specifications will be satisfied. Mo-

tivation: To remove the stationary errors we need an integrator. F1 and F2
are PI controllers, both of them will decrease the gain of the wanted cross-

over frequency (ω c = 5) by 1/2. F1 will decrease the phase at the wanted
cross-over frequency more than F2 so let’s choose F2. We also need to lift

up the phase at ω c = 5, to do this we use a lead filter. The lead filters
are given by F7 and F8. To get enough phase lift we pick F8 which adds

approximately 50○ to the phase at ω c = 5. pF8(iω c)p = 2 so together with
the PI controller that we added the gains will make sure that the cross-over

frequency is not changed.
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Figure 7 The available filters in problem 7.
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8. A third-order system

ẋ =





−1/2 −16/17 −2/9

−4/17 −2 −5/3

−8/9 −16/3 −1



 x +





1

4

8



u

y= ( 1 16 2 ) x

has the observability gramian

Ox =





1 0 0

0 64 0

0 0 2





and controllability gramian

Sx =





1 0 0

0 4 0

0 0 32



 .

a. Is this a balanced realization of the system? Motivate. (1 p)

b. You want to make a balanced truncation to get a first-order approximation

of the system. Find out which states you would like to remove. (2 p)

Solution

a. No, a balanced system has Ox = Sx which is not the case here.

b. By making a transformation ξ = Tx I can find a balanced realization. With
this transformation I have Sξ = TSxT

T and Oξ = T
−TOxT

−1, so to have a

balanced representation I need

Sξ = Oξ \ TSxT
T = T−TOxT

−1.

Since the gramians in this case are diagonal, the transformation matrix is

also chosen diagonal. Then T = TT and we have that TTSxTT = Ox. Since
the matrices are all diagonal this gives the equations











t41s1 = o1

t42s2 = o2

t43s3 = o3

[











t41 = 1/1

t42 = 64/4

t43 = 2/32

[











t1 = 1

t2 = 2

t3 = 1/2

.

The gramians are then

Sξ = Oξ =





1 0 0

0 16 0

0 0 8





As can be seen by looking at the gramians the state I would like to keep is

the ξ2 since it has the most influence. (Since T is diagonal this will also
correspond to the second state in the original representation x2.) So the
states I would remove are ξ1 and ξ3.
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