
1. Since S = 0 and S+T = 1 ⇒ T = 1. The transfer function from measurement
noise to process output also equals −T (s). Since measurement often has high-
frequency contents, we would like T (s) to be small for high frequencies. Also,
T (s) maps relative errors in the model to the output. Since models typically
are inaccurate for high frequencies, we would again like T (s) to be small for
high frequencies.

2. The cost function to be minimized is equivalent to the cost function

J =
∫ ∞

0
10xTCTCx+ u2 dt =

∫ ∞
0

xT

(
10 10
10 10

)
x+ u2 dt.

The corresponding Riccati equation then becomes

ATS + SA+Q1 − SBBTS = 0

with an S on the form

S =
(
s1 s2

s2 s3

)
.

Calculations yield that a positive definite solution is given by

s1 =
√

10
√

2
√

10 + 10− 10 ≈ 2.77
s2 =

√
10 ≈ 3.16

s3 =
√

2
√

10 + 10 ≈ 4.04

The optimal feedback vector is then given by

L = BTS = ( 3.16 4.04 )

lr is then calculated as

lr = (C(BL−A)−1B)−1 = 3.16

3. It is obvious from the Bode diagram that the process has an integrator, mak-
ing the closed-loop transfer function from reference to output have unit static
gain. However, the transfer function from input load disturbance to output,
P (s)C(s), will also have non-zero static gain, meaning that there will be a
static error. As for the second part, there are a number problems. First, the
phase margin for a P-controller at the desired cutoff frequency is around 10
degrees, which is really bad from a robustness perspective. Since a PI-controller
never can give a net gain of phase, we cannot expect it to work by itself in this
case. A potential fix for this is to combine the PI-controller with a lead filter in
order to increase the phase around the cutoff frequency. The next problem is
the magnitute of the resonance peak, which will spoil any effort to adjust the
cutoff frequency using the system gain. We can fix this by adding lag filters or
lowpass filters that pushed down the gain of the resonance peak and frequencies
higher than the cutoff frequency, hopefully without affecting the area around
the cutoff frequency too much.
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4.

a. The disturbance v can simply be seen as inputs for both states and w is added
to the output, the model is therefore

ẋ =
[
−1 0
1 −2

]
x+

[
1
0

]
u+

[
1
1

]
v

y = [ 0 1 ]x+ w.

b. Factorization results in:

Φv(ω) =
( ω

ω0
)2(

( ω
ω0

)2 + 1
)2 =

−iω
ω0(

−iω
ω0

+ 1
)2

︸ ︷︷ ︸
H∗(iω)

iω
ω0(

iω
ω0

+ 1
)2 = H∗(iω)H(iω),

which gives H(s) = s/ω0
(s/ω0+1)2 = sω0

s2+2sω0+ω2
0
.

c. The observable form (for example) can be found in the table of formulas and
results in [

ẋ3

ẋ4

]
=

[
−2ω0 1
−ω2

0 0

] [
x3

x4

]
+
[
ω0

0

]
n

v = [ 1 0 ]
[
x3

x4

]

so the full system can be written

ẋ =


−1 0 1 0
1 −2 1 0
0 0 −2ω0 1
0 0 ω2

0 0


︸ ︷︷ ︸

A

x+


1
0
0
0


︸ ︷︷ ︸

B

u+


0
0
ω0

0


︸ ︷︷ ︸

N

n

y = [ 0 1 0 0 ]︸ ︷︷ ︸
C

x+ w.

d. From equation 5.76-77 in the book we see that we need to find the symmetric
positive definite solution P to the Riccati equation

AP + PAT − PCTR−1
2 CP + NR1NT = 0,

where R1 = 1, R2 = 2, and A,B,C,N defined as above.

5.

a. The inputs to the controller are r and y0, i.e.

y =
(
r

y0

)
.

The input to P is
(
w

u

)
, which contains 4 signals, and the output is

(
z

y

)
,

which contains 4 signals as well. Thus P must be 4× 4.
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b. We know that (
z

y

)
=


e

u

r

y0

 ,
(
w

u

)
=


d

n

r

u

 .
The block diagram gives that

e = r − x = r − P0(d+ u),
u = u,

r = r,

y0 = n+ P0(d+ u).

Arranging this into matrix form gives the answer:

P =


−P0 0 1 −P0

0 0 0 1
0 0 1 0
P0 1 0 P0

 .

c. The control objective a) is convex in H, and H is a linear function of Q, so
the control objective a) is convex in Q. Since it is satisfied for Q1 and Q2, it is
thus satisfied for any convex combination

Q = wQ1 + (1− w)Q2, w ∈ [0, 1].

We see from the impulse responses that neither Q1 nor Q2 satisfies b) and
c). However, a convex combination of Q1 and Q2 will give the same convex
combination of the disturbance responses. Taking e.g. w = 0.3,

• The control signal satisfies |u(t)| ≤ 0.3·0.4+0.7·2 = 1.52, since |u(t)| ≤ 0.4
with C1 and |u(t)| ≤ 2 with C2.
• When t ≥ 3, the control error satisfies |e(t)| ≤ 0.3 ·0.7 + 0.7 ·0.05 = 0.275,
since |e(t)| ≤ 0.7 with C1 and |e(t)| ≤ 0.05 with C2.

Thus we can use Q = 0.3Q1 + 0.7Q2.

6.

a. The determinant is 1
(s+1)(s+2) −

2
(s+2)2 = −s

(s+1)(s+2)2 , which together with the
subdeterminants means that the poles are s = −2,−2,−1. The determinant
is the maximal subdeterminant so the zero is s = 0.

b. A state space form can be found by rewriting the system as

G(s) =
[ 1

s+1
1

s+2
2

s+2
1

s+2

]
=
[ 1

s+1
2

s+2

]
[ 1 0 ] +

[ 1
s+2

1
s+2

]
[ 0 1 ] =

=
[

1 0
0 2

]
[ 1

s+1
1

s+2 ]
[

1 0
1 0

]
+
[

1
1

]
1

s+ 2 [ 0 1 ]
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ẋ =

−1 0 0
0 −2 0
0 0 −2

x+

 1 0
1 0
0 1

u
y =

[
1 0 1
0 2 1

]
x

c. For constant inputs (s = 0) the transfer function becomes G(0) =
[

1 1/2
1 1/2

]
which means y1(t) = y2(t) in stationarity.

7. The small gain theorem gives that the closed-loop system is stable if

‖ − C/(1 + PK)‖∞‖∆‖∞ < 1,

this is equivalent to

‖ − C/(1 + PK)‖∞ = ‖K/(1 +K/(s+ 1))‖∞ < 1/2.

Where the largest gain is obtained for obtained for ω = ∞, this gives the
constraint

K < 1/2.

8.

a. For γ = 0.1

G(0) =
[

10 0.2
0.1 2

]
this gives

RGA(0) =
[

1.001 −0.001
−0.001 1.001

]
.

For γ = 1

G(0) =
[

1 2
1 0.2

]
this gives

RGA(0) =
[
−0.11 1.11
1.11 −0.11

]
,

clearly, y1 should be paired with u1 for γ = 0.1

b. With γ = 1,

G(0) =
[

1 2
1 0.2

]
.

With the decoupling matrices W1 and W2 where W2 = G−1(0), W1 = I,
G̃(0) = W2G(0)W1 = I is decoupled,

G−1(0) = − 1
1.8

[
0.2 −2
−1 1

]
.
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9.

a. The controllability gramian S and the observability gramian O are given by
the solution to the Lyapunov equations

AS + SAT +BBT = 0
ATO +OA+ CTC = 0

Since A = AT and B = CT , this reduces to only solving one of the Lyapunov
equations. If the realization is balanced, this amounts to finding a solution in
the form

S = O =
(
σ1 0
0 σ2

)
The terms of the Lyapunov equation then gives the following set of equations

−4σ1 + 1
4 = 0

σ1 + σ2 + 1
2(−1−

√
2

2 ) = 0

−4σ2 + 1
4 + (−1−

√
2

2 )2 = 0

with solution σ1 = 1/16 = 0.0625 and σ2 = 7+4
√

2
16 ≈ 0.7911. Hence, the

realization is balanced.

b. The smallest Hankel singular value is σ1. This corresponds to eliminating ξ1:

0 = −2ξ1 + ξ2 + 1
2y2 =⇒

ξ1 = 1
2ξ2 + 1

4y2

Inserting this into the rest of the system equations gives

ξ̇2 = ξ1 − 2ξ2 + 1
2y1 + (−1−

√
2

2 )y2

= 1
2ξ2 + +1

4y2 − 2ξ2 + 1
2y1 + (−1−

√
2

2 )y2

= −3
2ξ2 + 1

2y1 −
3 + 2

√
2

4 y2

u1 = 1
2ξ2

u2 = 1
2ξ1 + (−1−

√
2

2 )ξ2 = 1
4ξ2 + 1

8y2 + (−1−
√

2
2 )ξ2

= −3 + 2
√

2
4 ξ2 + 1

8y2

or in matrix form

ξ̇2 = −3
2ξ2 +

( 1
2 −3+2

√
2

4
)
y = Aξ2 +By

u =
( 1

2

−3+2
√

2
4

)
ξ2 +

(
0 0
0 1

8

)
y = Cξ2 +Dy
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