
Department of

AUTOMATIC CONTROL

FRTN10 Multivariable Control

Exam 2014­04­22

Points and grades

All answers must include a clear motivation and a well-formulated answer. An-

swers may be given in English or Swedish. The total number of points is 25. The

maximum number of points is specified for each subproblem.

Accepted aid

The textbook Glad & Ljung, standard mathematical tables like TEFYMA, an au-

thorized “Formelsamling i Reglerteknik”/”Collection of Formulas” and a pocket
calculator. Handouts of lecture notes and lecture slides are also allowed.

Results

The results will be reported via LADOK.
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1. Consider the system

G(s) = [ s
s+1

2
s+3 ]

a. Find a state space realization of the system. (2 p)

b. What are the poles and zeros of G? (1 p)

Solution

a.

G(s) = [1− 1
s+1

2
s+3 ] =

1

s+ 1 [ −1 0 ] + 1

s+ 3 [0 2 ] + [ 1 0 ]

this gives a state space realization

ẋ =
[−1 0

0 −3

]

x +
[−1 0

0 2

]

u

y= [ 1 1 ] x + [ 1 0 ]u.

b. The system can be rewritten to get a common denominator.

G(s) =
[

s(s+3)
(s+1)(s+3)

2(s+1)
(s+1)(s+3)

]

The pole polynomial is then

p(s) = (s+ 1)(s+ 3)

so the poles are s = −1 and s = −3, which is also easily seen from the state
space realization.

The zeros are given as the greatest common divisor of the maximal minors

of G(s). Since the greatest common divisor of s(s+ 3) and 2(s+ 1) is 1, the
system has no zeros.

2. Consider the system

ẋ =
[−2 1

1 −3

]

x +
[

2

0

]

u,

The system should be controlled so that J is minimized:

J =
∫ ∞

0

(

x21 + 4x22 + 2x1u+ 2u2
)

dt

a. Which of the following S solves the Riccati equation corresponding to this

set-up? (Note that there can be small round-off errors.)

1. S1 =
[

0.3750 0.0115

0.2125 0.6215

]

2. S2 =
[

0.1225 0.1325

0.1325 0.7050

]
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3. S3 =
[

0.1375 0.2025

0.2025 0.6550

]

(2 p)

b. Calculate the optimal state feedback vector L so that u = −Lx. (1 p)

c. Redefining the controller so that it contains a reference following term, i.e.

u = −Lx+ Lrr, calculate Lr so that the static gain from r to x1 is 1. (1 p)

Solution

a. The first alternative can be discarded as it is not symmetric. The mini-

mization criterium can be given as Q1 =
[

1 0

0 4

]

, Q12 =
[

1

0

]

, Q2 = 2 in

the Riccati equation 0 = ATS + SA + Q1 − (SB + Q12)Q−12 (SB + Q12)T .
Calculations yield that the second alternative (S2) is the correct answer.

b. L = Q−12 (BTS+ QT12) = [ 0.6225 0.1325 ]

c.

Lr =
(

M (BL − A)−1 B
)−1

=

=
(

[ 1 0 ]
([

2

0

]

[ 0.6225 0.1325 ] −
[−2 1

1 −3

])−1 [
2

0

]

)−1

=

= 1.5.

3. Consider the system Y(s) = G(s)U(s), where

G(s) =
[

1
2s+1 e

−2s 1
s+1

1
4s+1

3
3s+1

]

a. Decouple G(s) in stationarity using suitable decoupling matrices W1 and
W2. Also, state how the control signal u will depend on y if the diagonalized

system is controlled by Fdia� =
(

F1 0

0 F2

)

. (2 p)

b. Use RGA to determine which output should be coupled to which input if two

SISO controllers are to be used for controlling the system when following

input variations with a frequency of 10 Hz. (2 p)

Solution

a. We want G̃(s) = W2(s)G(s)W1(s) to be diagonal in stationarity. We can use
e.g. W1 = W2 =

(

1 −1
−1 0

)

which gives

G̃(0) =
(

1 −1
−1 0

)(

1 1

1 3

)(

1 −1
−1 0

)

=
(

2 0

0 1

)

.
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Figure 1 System in problem 4

The control signal is then given from

u = −W1Fdia�W2y =

= −
(

1 −1
−1 0

)(

F1 0

0 F2

)(

1 −1
−1 0

)

y =
(−F1 − F2 F1

F1 −F1

)

y.

b. RGA(G) = G. ∗ (G−1)T . Here we want to follow inputs with frequency
f = 10 Hz. So we want to calculate RGA at the frequency ω = 2π ⋅ 10.

G(20π i) (
(

0.0001− 0.0080i 0.0003− 0.0159i
0.0000− 0.0040i 0.0001− 0.0159i

)

which gives

RGA(G(20π i)) (
(

1.9997 + 0.0133i −0.9997− 0.0133i
−0.9997− 0.0133i 1.9997+ 0.0133i

)

.

From this we conclude that we want to control y1 with u1 and y2 with u2.

4. Consider the setup in Figure 1 with

P(s) = s− 2
s2 + 8s+ 16

a. Show whether or not the following specification on the sensitivity function

of the system can be fulfilled:

pS(iω )p ≤ 2ω√
ω 2 + 16

ω ∈ R

(2 p)

b. For a controller

C(s) = s
2 + 8s+ 16
(s+ 3)2

calculate the sensitivity and complementary sensitivity functions of the sys-

tem. (1 p)
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Solution

a. The specification

pS(iω )p ≤ 2ω√
ω 2 + 16

ω ∈ R
+

is equal to

sup
ω

∣

∣

∣

∣

∣

√
ω 2 + 16
2ω

S(iω )
∣

∣

∣

∣

∣

≤ 1

Since

WS(iω ) =
iω + 4
2iω

gives

pWS(iω )p =
√

ω 2 + 16
2ω

the specification can be written

sup
ω
pWS(iω )S(iω )p ≤ 1

According to Theorem 7.4 in [Glad&Ljung], this specification is impossible
to meet when the process has a RHP zero in s = z, unless pWS(z)p ≤ 1. Here
we have a zero in z = 2, so

pWS(z)p =
2+ 4
4

≥ 1

This means that the specification cannot be fulfilled.

b.

S(s) = 1

1+ PC =
s2 + 6s+ 9
s2 + 7s+ 7

T(s) = PC

1+ PC =
s− 2

s2 + 7s+ 7

5. We will consider optimal state estimation for the setup shown in Figure 2

with P(s) = 6
s+2.5 .

a. The process disturbance v1 has the power spectrum Φv1(ω ) = 1
ω 2+1 . The

measurement error v2 can be considered as white noise with intensity 1;

Φv2(ω ) = 1. Rewrite the system to a form where the only inputs are the
control signal and white noise signals with intensity 1. (2 p)

b. Determine the optimal Kalman filter gain for the system derived in the

previous subproblem.

Hint: For some choice of state variables, the Riccati equation has the solu-

tion P =
(

1 1/2
1/2 3/8

)

. (2 p)

Solution
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Figure 2 The setup for the system in problem 5.

a. We will here refer to the state in the system P as x1. The output can be

written as y = x1 + v2 where

X1(s) =
6

s+ 2.5(U(s) + V1(s)) [ ẋ1 = −2.5x1 + 6u+ 6v1

Φv1(ω ) =
1

ω 2 + 1 [ v1 =
1

s+ 1 e1 [ v̇1 = −v1 + e1 (Φ e1(ω ) = 1)

In matrix form, with x =
(

x1

v1

)

, this becomes:

ẋ =
(−2.5 6

0 −1

)

x +
(

6

0

)

u+
(

0

1

)

e1

y = ( 1 0 ) x + v2

b. The optimal Kalman filter gain is K = (PCT +NR12)R−12 . First, the choice
of state variables (and subsequent state space representation, including C)
which corresponds to the P-matrix in the hint must be found. The state

representation found in the first subproblem is inserted into the Riccati

equation

0 = NR1NT + AP + PAT − (PCT + R12)R−12 (PCT + R12)T

[ 0 = NR1NT + AP + PAT − PCTCPT

where N = ( 0 1 )T , R1 = 1, R2 = 1, R12 = 0.

If the first subproblem has been solved as above, this becomes

0 =
(

0 0

0 1

)

+
(−2.5 6

0 −1

)(

1 1
2

1
2

3
8

)

+
(

1 1
2

1
2

3
8

)(−2.5 0

6 −1

)

−
(

1 1
2

1
2

3
8

)(

1

0

)

( 1 0 )
(

1 1
2

1
2

3
8

)

=
(

1 1
2

1
2

1
4

)

−
(

1 1
2

1
2

1
4

)

= 0
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and we have therefore showed that the given P-matrix relates to the state

representation X =
(

x1

v1

)

, for which we have known A, B and C matrices.

If the state representation is inverted, i.e. X =
(

v1

x1

)

, the Riccati equation

will not hold and it can be realized that the only other state representation

is the aforementioned one, for which we can show as above that the Riccati

equation holds.

Using the C matrix given by this state representation, we can then cal-

culate K using the (simplified) expression

K = PCT =
(

1
1
2

)

.

6. The third order system

ẋ =





−0.5 1 1

0 −1 1.5

0 0 −2



 x +





1 1

1 0

0 3



u

y=
(

0 1 0

1 1 1

)

x

has the balanced realization

ξ̇ =





−0.3658 0.2886 −0.1586
−0.2918 −0.6964 −0.3465
0.2358 1.542 −2.438



ξ +





−0.8834 −2.183
−0.1861 −0.8637
−0.508 1.005



u

y =
(−0.4974 −0.01941 −1.096
−2.301 0.8833 −0.2585

)

ξ

with the observability gramian

Oξ =





7.5775 0 0

0 0.5604 0

0 0 0.2603



 .

a. What is the controllability gramian Sξ for the balanced realization?

(0.5 p)

b. Reduce the system to a first order system without changing the behavior

in stationarity. (2 p)

c. Calculate an error bound for the reduced system. (0.5 p)

Solution

a. In the balanced realization the observability gramian and controllability

gramian are equal so Sξ = Oξ .
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b. If we denote the state we want to keep ξ1, and the states we want to reduce
ξr, the system can be divided in the following way

(

ξ̇1

ξ̇r

)

=
(

A11 A12

A21 A22

)(

ξ1

ξr

)

+
(

B1

B2

)

u

y = ( C1 C2 )
(

ξ1

ξr

)

.

To keep the behavior in stationarity unchanged we want ξ̇r = 0 which gives
an expression for ξr, namely that

ξr = A−122 (−A21ξ1 − B2u).

By inserting that instead of ξr in the reduced system we get

ξ̇1 = (A11 − A12A−122 A21)ξ1 + (B1 − A12A−122 B2)u
y= (C1 − C2A−122 A21)ξ1 − C2A−122 B2u

.

The matrices are given by

A11 = −0.3658
A12 = (0.2886 −0.1586 )
A21 = (−0.2918 0.2358 )T

A22 =
(−0.6964 −0.3465
1.542 −2.438

)

B1 = (−0.8834 −2.183 )

B2 =
(−0.1861 −0.8637
−0.508 1.005

)

C1 = (−0.4974 −2.301 )T

C2 =
(−0.01941 −1.096
0.8833 −0.2585

)

.

By inserting the numerical values we get the system

ξ̇1 = (−0.4480 )ξ1 + (−0.8738 −2.4554 )u

y=
(−0.3502
−2.5818

)

ξ1 +
(

0.3170 0.3316

−0.0357 −0.8979

)

u.

c. An error bound is given by

ppy− yrpp2
ppupp2

≤ 2σ r+1 + ...+ 2σ n = 2 ⋅ 0.5604+ 2 ⋅ 0.2603 = 1.6414

7. Consider the system in Figure 3. C,P and ∆ are SISO transfer functions.

a. Assuming that T = 0, use the small gain theorem to find a condition on ∆
that gives stability of the closed loop system. (1 p)
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∆
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R Y

−1

Figure 3 Block diagram for problem 7.

b. Assuming that T = 1, ∆ = 0 and P = s+2
s2+s+1 , calculate C(s) using Internal

Model Control if the controller for the un-delayed system would have been

given by C0(s) = s+2
s+3 . (2 p)

c. For the controller above, how much can the time delay deviate from T = 1
without making the closed loop unstable? (1 p)

Solution

a. In order to use the small gain theorem we must obtain the transfer function

G from w1 to z1. We have

z1 = C(R −w1 − Pz1) [ Gw1→z1 =
−C
1+ PC .

The upper bound on ∆ is then

q∆q∞ ≤
1

qGw1→z1q∞
.

b. The rule of thumb says that we obtain Q as if there is no delay and then

obtain the controller as

C(s) = Q(s)
1− Q(s)P(s)e−s

Given the controller to the model without delay C0 = s+2
s+3 and the model

without delay P = s+2
s2+s+1 , we calculate Q

Q(s) = C0

1+ C0P
= s

3 + 3s2 + 3s+ 2
s3 + 5s2 + 8s+ 7

Now the controller is described as

C(s) = C0

1+ (1− e−s)PC0
= s3 + 3s2 + 3s+ 2
s3 + 5s2 + 8s+ 7− e−s(s2 + 4s+ 4)
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Figure 4 Bode diagram of PC for problem 7.

c. We can find the delay margin Lm for the open loop system G0 = PC by e.g.
calculating (numerically) the crossover frequency ω c from pG0(iω c)p = 1,
the phase margin ϕm = π − arg(G(iω c)), and then use that Lm =

ϕm
ω c
. This

gives ω c = 0.5134, ϕm = 2.4128, Lm = 4.70, so T < 4.7 will result in a
stable closed loop system. The bode plot for PC is shown in Fig. 4.

The limit can also be seen by looking at the step response for the closed

loop system

Gcl =
PC0

1+ PC0 + PC0(e−sT − e−s)
where T > 4.7 gives an unstable response while T < 4.7 gives a stable one.
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