
FRTN10 Multivariable Control

Laboratory Session 3

Kalman Filtering and LQ Control of the MinSeg Robot1

Department of Automatic Control

Lund University

1. Introduction

In this laboratory session we will develop Kalman filters and a linear-quadratic (LQ)
controller for the MinSeg™ balancing robot, see Figure 1. The MinSeg is based on a
Genuine Arduino Mega 2560 microcontroller and is equipped with a Lego NXT DC motor
with axles, wheels and encoder, as well as a 3-axis combined gyroscope and accelerometer.
A USB connector allows the Arduino to be programmed from a PC and also enables the
reading of plot data and writing of parameters during runtime.

Figure 1 The MinSeg™ balancing robot.

The aim of the lab is to develop a working controller for balancing the robot and let
it follow a square-wave wheel position reference signal. We will first design two Kalman
filters to extract state information from the raw gyro, accelerometer, and wheel encoder
signals. Then we will design an LQ controller for state feedback from the estimated states
with optional integral action and reference tracking.

Pre-lab assignments

Review lectures 9–11 on LQ control, Kalman filtering, and LQG control. Complete the
Preparatory assignments 5, 7, and 9. Read this entire document carefully.

1Written by Anton Cervin, latest update October 5, 2018.

1

2. The Lab Interface

We will use Simulink with Simulink Coder (formerly Real-Time Workshop) for modeling
and implementation of the filters and controllers. The main diagram is shown in Figure 2.

Figure 2 Simulink model lab3.slx for filter and controller implementation.

The Simulink model runs in discrete time with the sampling interval Ts (defined in the
Matlab workspace). When balancing the robot we want to use a very short time interval,
between 10 and 20 ms, in order not to introduce too much extra latency in the control
loop. For such short intervals, however, Simulink might not have time to update the scopes
properly. In the first assignments, it is therefore better to use a longer sampling interval,
between 30 and 50 ms.

Assignment 1. Download lab3 files.zip from the course homepage and extract the
contents to some suitable working directory. In a terminal window, type

VERSION=R2016a matlab

to start Matlab R2016a. Once Matlab has started, cd to the lab3 files directory and then type

setup lab3

to setup the paths to the Matlab/Simulink support packages and the Simulink libraries for the
Arduino and MinSeg hardware.

Open up and explore the Simulink model lab3.slx. When the model is opened, default (zero)
values for the controller variables kalman1d, kalman2d, L, and li are automatically defined in the
Matlab workspace.

Make sure that you understand how the IMU, Wheel encoder and Motor blocks relate to the real
MinSeg robot. Also check the current value of Ts. ✷

3. Process Overview. Calibration of Measurement Signals

Mechanically, the MinSeg consists of two main parts: the body and the wheels. They are linked
via the DC motor, a gearbox, and the wheel axles. Figure 3 shows the coordinate system we will

2

Figure 3 Definition of x, y, and z axes, tilt angle α, and wheel angle θ (adapted from [1]).

use. The tilt angle of the robot is denoted α and the wheel angle is denoted θ. In the lab we will
estimate and control the four state variables α̇, α, θ̇, and θ. Modeling of the dynamics of the robot
will be discussed later, in Section 6.

The MinSeg is equipped with a digital inertial measurement unit (IMU, the blue chip marked
MPU6050) that contains a triple-axis gyro and accelerometer. The gyro measures movement (an-
gular velocity) around the x, y, and z axes. In our application, the x gyro signal is proportional to
α̇, i.e., it measures the tilt rate of the robot. The signal is however noisy and has a slowly drifting
offset.

The accelerometer measures the acceleration of the IMU relative to free fall. When the device is
sitting still, the three acceleration components ax, ay, and az will add up as

√

a2x + a2y + a2z = 9.81 m/s2

As long as the robot is stationary and not tilting sideways (ax = 0), we can use the geometric
relationship indicated in Figure 3 and calculate the tilt angle according to

α = atan2(az,−ay)

The accelerometer signals are noisy and have slowly varying offsets. They will also pick up any
external forces acting on the IMU chip (remember F = m · a), making the calculation above
meaningful only for low-frequency signal components (below, say, 1 rad/s).

Assignment 2. Connect the MinSeg to the computer using the USB cable. Check that the COM
port is properly defined in the Simulink model under Simulation / Model Configuration Parameters
/ Hardware Implementation / Host-board connection. (Switching from Manually to Automatically and
back to Manually again normally sets it right.)

Click “Run” in the Simulink model and wait about 60 seconds for the diagram to be compiled and
uploaded to the Arduino. (If you get an error message, ask the lab supervisor for help.) When the
model is running, open up the IMU subsystem and study the raw signals from the x gyro and from
the z and y accelerometers. Rotate the robot in different directions by hand and verify that the
signals seem to behave as expected. ✷

3

wα α̇ α

n1 n2
∑∑

y1 y2

1

s

1

s

Figure 4 Model of the IMU for design of the first Kalman filter.

Assignment 3. Lay the robot flat on its back (battery case towards the table) and calibrate the
x gyro and y accelerometer readings to zero (approximately, on average) by entering suitable values
for the offsets xvel bias and yaccel bias. Then stand the robot up as close to its balancing point as
possible and calibrate the z accelerometer reading to zero by similarly adjusting zaccel bias. Check
that the calculated α value (alpha accel) correctly describes the robot tilt angle in stationarity. ✷

The calibration procedure described above should be repeated each time a new run is started, since
the raw values of the gyro and the accelerometer tend to drift.

Assignment 4. Keep the robot completely still for 1000 · Ts seconds and then hit “Stop”.
The 1000 most recent datapoints of alphadot gyro and alpha accel are automatically stored in the
workspace. Plot the signals, remove any linear trends, calculate their variance, and plot their
spectra, using, e.g.:

y1 = squeeze(alphadot gyro); % remove empty dimensions from array

plot(y1) % plot

y1 = detrend(y1,'linear'); % remove linear trend

plot(y1) % plot again

var(y1) % calculate stationary variance

pwelch(y1) % plot periodogram (estimate of spectrum)

Can the signals reasonably well be modeled as white noise? ✷

4. Design of Kalman Filter for α̇ and α

We start by designing a Kalman filter that uses the angular velocity measurement y1 from the gyro
and the calculated angle measurement y2 from the accelerometer to estimate the IMU angular
velocity α̇ and angle α. Ignoring the rest of the robot, the system can be modeled as a double
integrator from the external angular acceleration wα (representing the external forces on the chip)
to the tilt angle α, see Figure 4.

Assignment 5 (Preparatory). Convert the model in Figure 4 to state-space form using
the state vector (x1

x2
) = (α̇α). What dimensions and structure do the process and measurement

noise intensity matrices R1, R2, and R12 have in this case? Assume that the noise processes are
uncorrelated.

Setting R2 = I, write down the algebraic Riccati equation and the resulting set of quadratic
equations involving the elements of the error covariance matrix P = (p1 p2

p2 p3
). Would it be easy to

solve these equations by hand?

Using lqe in Matlab, calculate the Kalman filter gain K and the resulting observer poles for some
different values of R1 (very large and very small). How is the relative size of R1 compared to R2

influencing the speed of the observer? ✷

4

wθ θ̇ θ

n3

∑

y31

s

1

s

Figure 5 Model of the wheels for design of the second Kalman filter.

Assignment 6. Design the Kalman filter for α̇ and α in Matlab, using the measured values
of R2 from Assignment 4 and some arbitrary value for R1 as a starting point. Work in a Matlab
script so that you can easily repeat the whole procedure. Using ss, formulate the Kalman filter as
a state-space system kalman1 according to

dx̂(t)

dt
= (A−KC)x̂(t) +Ky(t)

x̂(t) = I x̂(t)

The system should have two inputs and two outputs to match the Simulink model. Finally, convert
the filter into a discrete-time system kalman1d using c2d and first-order hold sampling1 as follows:

kalman1d = c2d(kalman1,Ts,'foh');

Plot the Bode magnitude diagram of the filter using bodemag and interpret what you see. How are
the measurements y1 and y2 combined to produce the estimates x̂1 and x̂2 respectively?

Hit “Run” and try the Kalman filter on the real process. After calibrating the measurements, tilt
the robot by hand and observe how fast the estimates x̂1 and x̂2 are following the movements. Hit
“Stop”, repeat the whole procedure with different design matrices and observe the difference in
tracking speed. For balancing, the filter bandwidth from y1 to x̂1 should be at least 50 rad/s and
from y2 to x̂2 about 1 rad/s. ✷

5. Design of Kalman Filter for θ̇ and θ

Next, we turn to designing a second Kalman filter for estimating the wheel angular speed θ̇ and
position θ from the encoder measurement y3. A model of the subsystem is shown in Figure 5.
The measurement noise n3 represents the quantization error of the wheel encoder, which has a
resolution of 0.5 degrees.

Assignment 7 (Preparatory). Convert the model in Figure 5 to state-space form using the
state vector (x3

x4
) =

(

θ̇
θ

)

. Assuming the relative noise intensities

R1 =









ω4 0

0 0








, R2 = 1,

show that the algebraic Riccati equation for the Kalman filter has the solution

P =









√
2ω3 ω2

ω2
√
2ω









and that the resulting observer poles are given by the characteristic equation

s2 +
√
2ωs+ ω2 = 0.

(We have hence shown that, for this problem, placing the two observer poles in the standard pattern
with ±45◦ angle from the negative real axis is optimal.) ✷

1You can learn more about discretization and implementation methods in FRTN01 Real-Time Systems.

5

Assignment 8. Design the Kalman filter for θ̇ and θ in Matlab. Aim for a filter bandwidth
of at least 50 rad/s. Formulate the Kalman filter as a state-space system kalman2 using ss (see
Assignment 6). The system should in this case have one input and two outputs to match the
Simulink model. Then convert it into discrete time using

kalman2d = c2d(kalman2,Ts,'foh');

Finally, hit “Run” and try the Kalman filter on the real process. Turn the robot wheels by hand
and verify that the estimates x̂3 and x̂4 seem to behave as expected. ✷

6. Design of LQ State Feedback

We now turn to modeling and controlling the dynamics of the robot to make it balance in the
upright position (α = 0). First-principles modeling of the motor, wheels and body of the robot
gives a set of nonlinear differential equations, see [2] for details. Linearization of these equations
around the upright equilibrium gives the following linear model:

α̈ = −3.1α̇+ 58.4α+ 62.7θ̇ − 148u

θ̈ = 40.1α̇− 318α− 766θ̇ + 1808u

The control signal u represents the motor voltage (limited to ±3.25 V for power over USB). Using

the state vector x = (α̇ α θ̇ θ)
T
we can write this as

ẋ =



























−3.1 58.4 62.7 0

1 0 0 0

40.1 −318 −766 0

0 0 1 0



























x+



























−148

0

1808

0



























u

Assignment 9 (Preparatory). Calculate the poles of the linear robot model using Matlab.
The fastest pole is related to the motor dynamics. Explain why there is a pole located in the
origin—how does it relate to the real robot? Are there any fundamental limitations imposed by
the dynamics? ✷

Assignment 10. Define the system matrices as well as some initial values of the design weights
Q1 and Q2 in Matlab and then calculate an LQ controller for the robot using lqr:

L = lqr(A,B,Q1,Q2)

Simulate the closed-loop response to the initial condition α = 0.04 rad (all other states zero):

syscl = ss(A-B*L,[],[eye(4);-L],0);

x0 = [0 0.04 0 0];

initial(syscl,x0);

The plot shows the response of the four states as well as the control signal (in the fifth subplot).
The tilt angle should recover within about 1 s, while the wheel angle could take much longer to
recover. At the same time, the control signal magnitude should not exceed 3.25 V. Adjust the
design weights and repeat the above procedure until you have a controller that seems reasonable.

Before the real balancing test, set Ts to a smaller value and redo the discretization of the kalman1
and kalman2 systems.

Hit “Run” and test the controller on the robot. Calibrate the sensor readings, balance the robot
by hand in the upright position, and check that the control signal u looks reasonable. Finally set
the Output gain to 1 to activate the controller. DOES IT WORK?

To stop the controller, set the Output gain back to 0 and hit “Stop”. ✷

6

7. Integral Action and Reference Tracking

In the final part of the lab we will introduce tracking of the wheel position reference signal r using
explicit integration. The integrator state is given by

ẋi = r − x̂4

where x̂4 is the estimated wheel position from the second Kalman filter. As you can see, this
calculation has already been implemented in the Simulink model.

Assignment 11. Use lqi to design an extended state feedback vector Le = (L li) that can
then be used in an extended control law

u = −Lx̂− lixi

Proceed in Matlab as follows:

Qi = ... % Integral state penalty

Q1e = blkdiag(Q1,Qi) % Extended Q1 matrix

sys = ss(A,B,[0 0 0 1],0) % Define system with theta as the only output

Le = lqi(sys,Q1e,Q2) % Calculate extended feedback gain vector

L = Le(1:4) % Extract L

li = Le(5) % Extract li

Hit “Run” and test the controller. If the system seems stable, activate the theta reference by
entering a suitable Amplitude value like π. If needed, go back and tune the Kalman filters or the
state feedback further. ✷

8. Summary and Evaluation

Assignment 12. Answer the following questions on a piece of paper and hand in:

1. Write down the most important lessons learned by designing “optimal” filters and controllers
for the MinSeg robot.

2. This was the first time this lab was given. What could be improved for future editions?

✷

References

[1] Angle estimation using gyros and accelerometers (lab PM), January, 2018. Division of Auto-
matic Control, ISY, Linköping University, Sweden.

[2] Brian Howard and Linda Bushnell. Enhancing linear system theory curriculum with an inverted
pendulum robot. In Proc. American Control Conference, 2015.

7

