
FRTN10 Exercise 13. Controller Simplification

13.1 Consider a SISO system for which the pole-zero map is given in Figure 13.1.

a. Determine the transfer function G(s) of the system, assuming that the static

gain is G(0) = 1.

b. By studying the pole-zero map, it is possible to get a hint that the system is

a candidate for model order reduction. How?

c. ÏÍ Calculate a balanced realization and the Hankel singular values of the

system. Perform a model reduction by eliminating the state corresponding

to the smallest singular value. Plot the Bode diagrams of the original and

reduced models.

Useful commands: balreal, modred.
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Figure 13.1 Pole-zero map of the system in Problem 13.1

13.2 For the system

(

ẋ1

ẋ2

)

=
(−1 0

−1 −0.5

)(

x1

x2

)

+
(

2

1

)

u

y = ( 1 1 )
(

x1

x2

)

+ 10u

solve the following problems by hand:

a. Verify that the controllability Gramian is

(

2 0

0 1

)

while

(

0.5 0

0 1

)

is the

observability Gramian.

b. Determine the Hankel singular values.

c. Find a coordinate transformation x̂ = T x, where T =
(

t1 0
0 t2

)

, that gives a

balanced realization.
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Exercise 13. Controller Simplification

d. Find a reduced system G1(s) by truncating the state corresponding to the

smallest Hankel singular value.

13.3 ÏÍ For the same system and notation as in the previous problem, use

Matlab for the following:

a. Find the transfer function G(s) from u to y.

b. Compare the error maxω pG(iω) − G1(iω)p with the error bound for balanced

truncation.

c. Find a reduced system G2 by truncating both states and keeping just a

constant gain.

d. Compare the error maxω pG(iω) − G2(iω)p with the error bound for balanced

truncation.

13.4 ÏÍ Find a reduced order approximation of

2s2 + 2.99s+ 1

s(s+ 1)2

by writing the transfer function as the sum of an integrator and a stable

transfer function, then applying balanced truncation to the stable part. You

may use a computer.

13.5(*) ÏÍ Try model reduction on the controller K2d designed in Problem 12.2(b).

Try to reduce the controller to a 10th order and a 5th order system and

investigate whether the maximum sensitivity constraint is satisfied.
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Solutions 13. Controller Simplification

Solutions to Exercise 13. Controller Simplification

13.1 a. Inspection of the locations of the poles and zeros gives us the transfer function

G(s) = 1.04
s/1.3+ 1

(s/1.2+ 1)(s2 + 0.4s+ 1.04)

b. The closeness of the pole-zero pair on the real axis suggests that a model

reduction might be possible.

c. A balanced realization and the Hankel singular values for the system can be

calculated using the Matlab command

>>> s = tf(’s’);

>>> G = 1.04*(s/1.3+1)/((s/1.2+1)*(s^2+0.4*s+1.04));

>>> [balr,g] = balreal(G);

which gives the following Hankel singular values:

� =







1.5105

1.0196

0.0091







Elimination of the state in the balanced realization corresponding to the

smallest Hankel singular value can be done by (for example)

>>> modsys = modred(balr,g<0.01)

>>> modsysG = tf(modsys)

This gives the following transfer function for the reduced order system:

Gr(s) = 0.0181
s2 − 2.412s+ 57.49

s2 + 0.4086s+ 1.043

A Bode magnitude plot of the original system and the reduced system is

shown in Figure 13.1.

13.2 a. With

Wc =
(

2 0

0 1

)

, A =
(−1 0

−1 −0.5

)

, B =
(

2

1

)

we have

AWc+Wc AT + BBT =
(−2 0

−2 −0.5

)

+
(−2 −2

0 −0.5

)

+
(

2

1

)(

2

1

)T

=
(

0 0

0 0

)

so Wc is the controllability Gramian. Similarly, with

Wo =
(

0.5 0

0 1

)

Wo A+AT Wo+CTC =
(−0.5 0

−1 −0.5

)

+
(−0.5 −1

0 −0.5

)

+
(

1

1

)

( 1 1 ) =
(

0 0

0 0

)

so Wo is the observability Gramian.
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Figure 13.1 Bode magnitude plot of the original and reduced system in Problem 13.1

b. The Hankel singular values are the square roots of the eigenvalues of

WcWo =
(

1 0

0 1

)

so they are both 1. (With both singular values being of the same order of

magnitude, it is probably not a great idea to apply balanced truncation.)

c. The coordinate change x̂ = T x yields the new Gramians Ŵc = T WcT
T and

Ŵo = T−T WoT−1. With T =
(

t1 0

0 t2

)

we get the equations

T WcT
T =

(

t1 0

0 t2

)(

2 0

0 1

)(

t1 0

0 t2

)

=
(

2t1
2 0

0 t2
2

)

and

T−T WoT−1 =
(

1/t1 0

0 1/t2

)(

0.5 0

0 1

)(

1/t1 0

0 1/t2

)

=
(

0.5/t1
2 0

0 1/t2
2

)

which gives

2t1
2 = 0.5/t1

2 [ t1
4 = 1/4 [ t1 = 1/

√
2

t2
2 = 1/t2

2 [ t2
4 = 1 [ t2 = 1

.

With this T

T =
( 1√

2
0

0 1

)

the Gramians become

Ŵc =
(

1 0

0 1

)

Ŵo =
(

1 0

0 1

)

.
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Solutions 13. Controller Simplification

Hence, a balanced realization is

˙̂x = Âx̂+ B̂u

y = Ĉ x̂+ D̂u

where

Â = T AT−1 =
( −1 0

−
√

2 −0.5

)

B̂ = T B =
(

√
2

1

)

Ĉ = CT−1 = (
√

2 1 ) D̂ = D

d. In this case, the Hankel singular values have the same size, therefore either

could be removed. by letting ˙̂x2 = 0, x̂2 can be expressed in terms of x̂1

through 0 = Â21 x̂1 + Â22 x̂2 + B̂2u. The reduced realization then becomes

˙̂x1 = ( Â11 − Â12 Â−1
22 Â21)x̂1 + (B̂1 − Â12 Â−1

22 B̂2)u
yr = (Ĉ1 − Ĉ2 Â−1

22 Â21)x̂1 + (D̂ − Ĉ2 Â−1
22 B̂2)u

where for example Â21 is the element in the second row and first column in

Â.
˙̂x1 = −x̂1 +

√
2u

yr = −
√

2x̂1 + 12u

The transfer function is obtained through the Laplace transform

G1(s) = 12− 2

s+ 1

13.3 a. The Matlab command tf(ss(A,B,C,D)) gives

G(s) = 10s2 + 18s+ 5

s2 + 1.5s+ 0.5

b. Plotting the Bode diagram for G(s)−G1(s) through the command bodemag(G-G1)

gives 2 as the maximal error, obtained at large frequencies. The error bound,

twice the sum of the truncated singular values, also gives 2. In this case the

error bound is tight.

c. Truncating both states gives

G2 = D̂ − Ĉ Â−1 B̂ = 10

d. Plotting bodemag(G-Gr) gives 2 as the maximal error, near ω = 1. The error

bound 2(1+ 1) = 4 is conservative.

13.4 Through partial fractions one can write

2s2 + 2.99s+ 1

s(s+ 1)2 = 1

s
+ s+ 0.99

(s+ 1)2
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Solutions 13. Controller Simplification

The Matlab command

[G3bal,g] = balreal(tf([1 .99],[1 2 1])) gives

� =
(

0.4950

0.00001

)

so one state can be removed right away.

G3red = modred(G3bal,(g<0.1)) yields

−2.525 · 10−5s+ 1

s+ 1.01
( 1

s+ 1.01

With the integrator we get the reduced system

1

s
+ 1

s+ 1.01
= 2s+ 1.01

s(s+ 1.01)

The commands balreal and modred can actually be used directly on systems

with an integrator since they do the separation automatically.

13.5 An investigation could proceed as follows:

spring_mass_problem % run the (original) optimization from exercise 12

hsvd(K2d) % plot Hankel singular values of K2d

K2d10 = balred(K2d,10) % do reduction to 10th order system

bodemag(K2d,K2d10) % compare controller Bode diagrams

S10 = feedback(1,Pmass_d*-K2d10); % calculate sensitivity function

Ms = norm(S10,inf) % calculate maximum sensitivity

K2d5 = balred(K2d,5) % do reduction to 5th order system

bodemag(K2d,K2d5) % compare controller Bode diagrams

S5 = feedback(1,Pmass_d*-K2d5); % calculate sensitivity function

Ms = norm(S5,inf) % calculate maximum sensitivity

The maximum sensitivity becomes 1.33 for the 10th order controller and 1.38

for the 5th order controller, so the original constraint is violated in both cases.

A solution could be to tighten the constraint before optimizing and reducing

the controller.
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