
FRTN10 Exercise 12. Synthesis by Convex Optimization

12.1 We want to design a controller C for the stable SISO process P0 as shown

in Figure 12.1 using the Youla parametrization and convex optimization. To

do this, the control loop must first be transformed into the standard form of

Figure 12.2, where z are the signals that we want to control, y are the signals

available to the controller, w are the exogenous inputs and u is the control

signal.
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Figure 12.1 The control loop in problem 12.1
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Figure 12.2 Desired form of the control loop in problem 12.1

The signals z and w are given by

z =

(

e

u

)

, w =







d

n

r


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
,

where the control error is e = r− x. The controller C, which is a 1$2 transfer

function, is the same in both figures, as is the control signal u.

a. What is the controller input y of Figure 12.2 according to Figure 12.1?

What is the size of the transfer matrix P?

b. Find the transfer matrix of the generalized plant P so that Figure 12.2 and

Figure 12.1 describe the same control problem.

c. The Youla parametrization results in the closed-loop system

z = Hw

where the transfer function H is given by

H = Pzw + PzuQPyw.
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Exercise 12. Synthesis by Convex Optimization

The control objectives are

(a) To make the gain ppHi jpp ≤ 10 for all elements Hi j.

(b) During an impulse disturbance experiment in d, the control signal should

satisfy pu(t)p ≤ 1.

(c) During an impulse disturbance experiment in d, from two seconds on-

ward the control error should be small: pe(t)p ≤ 0.75, t ≥ 2, if the impulse

occurs at t = 0.

Two transfer functions Q1 and Q2 have been found that satisfy objective

a). Figure 12.3 shows impulse responses from d to e and u when using

the corresponding controllers C1 and C2. Find a Q that satisfies all three

objectives a), b), c).
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Figure 12.3 Impulse responses from disturbance d to control error e (top) and control signal

u (bottom) for the controllers C1 and C2 in problem 12.1

12.2 ÏÍ In Problem 11.2 we considered a mass-spring system. If you haven’t

completed that problem or don’t remember it, you should go through it before

solving this problem.

In this problem we are going to find an (almost) optimal controller with

respect to the cost function and constraints given in Problem 11.2. We are

going to do this by reformulating the problem via the Youla parametrization,

and then choose a finite basis for the Q parameter and a finite number of

points where the time domain and frequency domain constraints should be

enforced. The problem is then easy to solve using a convex optimization tool

such as sedumi or sdpt3. Since it is time-consuming to interface directly with

the solver, we will use cvx.

cvx is a Matlab-based modeling system for convex optimization. Before trans-

lating the problem to a suitable input to the solver, cvx checks if the problem
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Exercise 12. Synthesis by Convex Optimization

satisfies the Disciplined Convex Programming (DCP) rule-set; if the DCP

rules are satisfied the problem is guaranteed to be convex, and if they are not

satisfied the problem is not processed. cvx is available on the lab computers,

but it can also be downloaded at http://cvxr.com/cvx/download/, together

with the solvers sdpt3 and sedumi.

The files for the exercise are found on the course web page. The main file

is spring_mass_problem.m, and the files qcvx_* help you to set up the Youla

parametrization and recover the controller. In spring_mass_problem.m, you

will be able to modify the objective function and the constraints.

We will formulate and solve the problem in discrete time, as it gives a straight-

forward parametrization of Q in the time-domain. If you are not used to

working with discrete-time systems—don’t worry! Just consider the discrete-

time system an approximation of the continuous-time system.

To get a finite dimensional problem, the time-domain and frequency domain

constraints can only be enforced in a finite number of points. For example,

the constraints on the time domain signals are only enforced for the first

170 samples, which, given the sampling time of 0.2 seconds, amounts to the

first 34 seconds. It is important that this interval covers the time-scale of the

system dynamics.

The mass-spring system has two poles in s = 0 and is thus unstable. In

order to get the Q optimization working we need to stabilize the plant with a

nominal controller. The final controller will then be an augmented version of

this stabilizing nominal controller. The function qcvx_q_parametrization.m

designs this nominal controller and returns the transfer function matrices T1,

T2, and T3, for the Q-parametrization

T1 + T2QT3,

as well as state space data required to recover the optimal controller from Q.

a. To get started you need to run setup_cvx and then cvx_setup. Then run

spring_mass_problem.m and study the output. A solution satisfying the con-

straints of the problem has been computed. Look at the code in the script and

try to understand it.

The constraints on the unit step response from r to d1 are visualized in

Figure 12.4. Which constraints are active? A constraint is active if the solution

touches the constraint at any point.

b. Plot the Bode diagram of the controller. Can you recognize any resemblance

with any other type of controller? Can you give some intuitive explanation to

any of the dips in the magnitude plot?

c. The output from the solver looks something like this:
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Figure 12.4 Constraints on the closed-loop step response from the reference, r, to the position

of the first mass, d1. os is the maximum allowed overshoot.

Calling SeDuMi 1.34: 1823 variables, 222 equality constraints

For improved efficiency, SeDuMi is solving the dual problem.

------------------------------------------------------------

SeDuMi 1.34 (beta) by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.

Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250,

beta = 0.500, eqs m = 222, order n = 1285, dim = 1824, blocks = 202

nnz(A) = 24135 + 0, nnz(ADA) = 4682, nnz(L) = 2452

it : b*y gap delta rate t/tP* t/tD* feas cg cg prec

0 : 1.10E+03 0.000

1 : -2.81E+00 3.99E+02 0.000 0.3628 0.9000 0.9000 3.89 1 1 1.3E+00

2 : -8.46E+00 2.37E+02 0.000 0.5948 0.9000 0.9000 1.93 1 1 7.9E-01

...

29 : -1.42E+02 1.41E-12 0.000 0.0450 0.9900 0.9900 1.00 5 5 1.9E-08

30 : -1.42E+02 8.99E-14 0.000 0.0637 0.9900 0.9900 1.00 8 7 1.2E-09

...

------------------------------------------------------------

Status: Solved

Optimal value (cvx_optval): +140.387

Let’s not go into detail on what all columns stand for, but rather look only

at the column feas. The number you end up with should ideally be 1, or at

least close, in order for you to have a feasible solution (one that satisfies all

constraints). If you end up with a value of −1, then you are certain that there

is no solution. The higher you choose the order of your Q filters, the more

likely it is that a solution is found. If you do not find a feasible solution, even

though the order of the Q filters is large, this tells you that you need to relax

the constraints in order to find a controller.
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Exercise 12. Synthesis by Convex Optimization

Take your code and decrease NQ=n_q1=n_q2 until your problem is no longer

feasible. What is the least order NQ you need in order to to obtain a feasible

solution?

d. Increase the order of Q1 and Q2 simultaneously (NQ=n_q1=n_q2) from the

value you obtained in the previous subproblem and plot NQ against the cost

function value. Explain the shape of this plot and comment on how the max

value of the control signal changes when NQ increases. Hint: Comment out the

line where NQ is set, and run the script spring_mass_problem.m from a new

script where you change NQ and plot the value of optimal_cost.

e. Change the weights in the objective function and see how this alters the

solution. Also play around with the constraints to see if you can achieve an

extremely fast step response. Explain your results.

f. Take a look in the other m-files and see if you can find the resulting closed-

loop transfer function matrix. Plot all 9 closed-loop Bode magnitude diagrams.

Point out at least one of these that you would have wished had a different

appearance. How would you have preferred it to look and why?

g. Plot the effect of a step disturbance on the signal p1. As you saw previously

in part b, the low-frequency gain was very low, i.e., the controller did not

have integral action. Is this consistent with the disturbance response? Add a

constraint on the step response from d to p1 and see if you can improve the

disturbance rejection. Look at the gain curve of the new controller.

h. (*) Read more about convex optimization in

http://www.stanford.edu/~boyd/cvxbook/,

and more about finding the limits of performance of linear control systems

using optimization in

http://web.stanford.edu/~boyd/lcdbook/.
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Solutions 12. Synthesis by Convex Optimization

Solutions to Exercise 12. Synthesis by Convex

Optimization

12.1 a. The inputs to the controller are r and y0, i.e.

y =

(

r

y0

)

.

The input to P is

(

w

u

)

, which contains 4 signals, and the output is

(

z

y

)

,

which contains 4 signals as well. Thus P must be 4$ 4.

b. We know that

(
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)

=
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.

Setting C = 0, the block diagram gives that

e = r− x = r− P0(d + u),

u = u,

r = r,

y0 = n+ P0(d + u).

Arranging this into matrix form gives the generalized plant model

P =











−P0 0 1 −P0

0 0 0 1

0 0 1 0

P0 1 0 P0











.

c. The control objective (a) is convex in H, and H is a linear function of Q, so

the control objective a) is convex in Q. Since it is satisfied for Q1 and Q2, it

is thus satisfied for any convex combination

Q = wQ1 + (1− w)Q2, w ∈ [0, 1].

We see from the impulse responses that neither Q1 nor Q2 satisfies (b) or

(c). However, a convex combination of Q1 and Q2 will give the same convex

combination of the disturbance responses. Taking e.g. w = 0.7,

• The control signal satisfies pu(t)p ≤ 0.7 ·0.4+0.3 ·2 = 0.88, since pu(t)p ≤
0.4 with C1 and pu(t)p ≤ 2 with C2.

• When t ≥ 2, the control error satisfies pe(t)p ≤ 0.7 · 1 + 0.3 · 0.1 = 0.73,

since pe(t)p ≤ 1 with C1 and pe(t)p ≤ 0.1 with C2.

Thus we can use Q = 0.7Q1 + 0.3Q2.

12.2 a. See the plots in Figures 12.1–12.2 and the associated captions. We see that

the only inactive constraint is the one on the control signal. Also see Figure

12.3 for a Nyquist plot with a circle for the Ms constraint.
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Figure 12.1 Step responses from reference r to mass position p1 and to control signal u.

b. bodemag(K2d)

The gain curve is shown in Figure 12.4. The shape of the magnitude plot is

very similar to that of a PD controller. Since the D-part of a PID controller

acts to damp out oscillations, it makes sense that we have this kind of simi-

larity.

The system has its resonance frequency at 5.8 rad/s, which is almost ex-

actly at the same frequency as the deepest dip in the controller magnitude

plot. The reason for the dip is that we do not want to amplify signals at this

frequency. A PD controller does not have this kind of flexibility in its structure

to damp out a certain frequency and is therefore not so well suited for highly

oscillatory systems like this one.

c. The least value on NQ, for which our problem is feasible, is 7.

d. See Figure 12.5 for a plot of the cost function value versus the order of the

Q filters. When NQ reaches around 20, the control will gain very little from

increased complexity of the Q filter. We can then say that we have a good

estimate of the limit of performance, i.e. lowest cost that linear controller can

achieve given the problem setup.

The maximum value of the control signal will decrease as the order of the Q
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Figure 12.2 The sensitivity function of the system.
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Figure 12.3 The open-loop Nyquist curve and the Ms circle when the optimal controller is

used.

filters goes up. For NQ= [7, 10, 15, 20], we get umax = [6.0, 4.9, 3.8, 3.7]. This

means that the more complex the controller becomes, the more freedom it will

have to choose its control signal. As it is good to have a control signal that is

low on energy (due to the cost function), it is also likely that it goes down in

magnitude if it has the possibility.

e. If we start out by setting ρ = 0 (i.e. weight_u = 0.0), then we do not punish

the control signal energy at all, which means that we may get very aggressive

and poorly damped control. The constraint on umax will to some extent prevent

this, but if umax is made arbitrarily large then we can get a step responses

like the one in Figure 12.6. If instead γ = 0 while ρ remains 1, then the

solution will remain fairly unchanged. The reason is that both the constraints

on rise time and the cost of having a large e will force u to be quite active
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Figure 12.4 Bode diagram of the controller.
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Figure 12.5 Cost function value plotted against the complexity of the Q filters.

still. If the step response constraints are made inactive, the solution will be

fairly close to the one of the nominal LQG controller.

f. Looking in the files we find that Gcl corresponds to the closed loop transfer

matrix. We can plot the magnitude curves with the command

bodemag(Gcl).

We see that the transfer function in the middle, Huon, does not have high
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Figure 12.6 p1 due to a reference step when ρ = 0. The control is very aggressive.

frequency roll-off. High frequency measurement noise, n, may therefore lead

to a very noise control signal. This shows that it is very important to take

all signals in a system into consideration and that a solution, even though

“optimal”, might not be good. Remember, “you get what you ask for”. If we

were to modify the problem, a good idea would be to put constraints on this

closed-loop transfer function as well.

g. First define the constraint for the step response d → p1,

ub_cl_diststep = min(1, exp(-0.2*(t-5)));

and then add it to the optimization problem with

-ub_cl_diststep <= cl_stepresp(:,1,3) <= ub_cl_diststep;

If we try to solve the problem, we will see that it is has become infeasible. By

increasing the order of the Q-filters by putting NQ=30, you will be able to find

a solution. See figures 12.7 and 12.8.
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Figure 12.7 Disturbance step when the controller has been designed with respect to the

disturbance rejection constraint (blue) and the original controller (red).
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Figure 12.8 Controller gain when the controller has been designed with respect to a distur-

bance rejection constraint (blue) and original controller (red). Note that the low frequency gain

is much higher for the controller that was designed for step disturbance rejection, this can be

seen as added integral action.
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