
FRTN10 Exercise 9. Kalman Filtering

9.1 Consider the unstable first-order system

ẋ(t) = x(t) + u(t) + w1(t)
y(t) = x(t) + w2(t)

The uncorrelated noise signals wi(t) are white with intensities Ri. We want

to investigate how the optimal Kalman filter depends on noise parameters.

a. Show that the Kalman filter gain only depends on the ratio β = R1/R2.

b. Find the observer error dynamics, i.e., the dynamics of the estimation error

x̃(t) = x(t) − x̂(t).

c. How does the error dynamics depend on the ratio β = R1/R2? Interpret the

result for large β (process noise much larger than measurement noise), and

for small β (measurement noise much larger than process noise).

9.2 A Kalman filter should be designed for the second-order system

ẋ(t) =
(

0 1

1 0

)

x(t) +
(

1

0

)

u(t) + w1(t)

y(t) = ( 1 0 ) x(t) + w2(t)

where w1 and w2 are uncorrelated white noise processes with intensities

R1 =
(

3 0
0 3

)

and R2 = 1, respectively.

a. Calculate the minimum observer error covariance P and the optimal Kalman

filter gain K .

b. Write down the resulting filter equations for x̂1 and x̂2.

c. (*) ÏÍ Find the minimum error covariance P and the optimal filter gain

K using lqe in Matlab.

9.3 Consider an integrator process driven by unit intensity white noise:

ẋ(t) = w1(t), R1 = 1

For each of the cases below, assuming that an optimal Kalman filter should

be designed, compute the minimum observer error variance.

a. There is one noisy measurement of x, given by

y(t) = x(t) + w2(t), R2 = 1

b. There are two independent noisy measurements of x, given by

y1(t) = x(t) + w21(t), R21 = 1

y2(t) = x(t) + w22(t), R22 = 10
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Exercise 9. Kalman Filtering

c. There are two dependent noisy measurements of x, given by

y1(t) = x(t) + w21(t),
y2(t) = x(t) + w22(t),

R2 =
(

1 1

1 10

)

9.4 We would like to design an output feedback controller for the stable second-

order system

G(s) = 1

(s+ 1)2 .

The first step is to design a Kalman filter. The process and its disturbances

have been modeled as shown in Figure 9.1, where w11, w12 and w2 are uncorre-

lated, unit intensity white noise processes. A low-frequency input disturbance

has been modeled by filtering w12 through a low-pass filter 1
s+ε

, where ε > 0

is a small number.

Write down the system in state-space form and find all the relevant matrices

needed to state a Riccati equation for the Kalman filter.

9.5 Consider control of a DC-motor,

G(s) = 1

s(s+ 1)

Introduce the state variables x1 = y, x2 = ẏ. White process noise is active

on both states with intensity 1 and with input vector ( 0.1 0.1 )T . There is

also noise on the measurements with intensity 0.1. This gives the following

state-space model

ẋ(t) =
(

0 1

0 −1

)

x(t) +
(

0

1

)

u(t) +
(

0.1

0.1

)

v1(t)

y(t) = ( 1 0 ) x(t) + v2(t)

with R1 = 1, R2 = 0.1 and R12 = 0

a. The motor will be connected to an external system that might be oscillatory

around the frequency 0.5 rad/s, but there is no detailed knowledge about its

properties. In order not to excite the oscillatory modes we would like the

u

w11

w12

w2

y

ΣΣ Σ
1

(s+ 1)2

1

s+ ε

Figure 9.1 Process with additive low-frequency input disturbance.
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Exercise 9. Kalman Filtering

controller to have small gain around the this frequency. This can be achieved

by extending the measurement equation as

ye(t) = ( 1 0 ) x(t) + v2(t) + v3(t)

The extra measurement disturbance v3 is generated by passing unit intensity

white noise n through a second-order filter with a transfer function

H(s) = Kvs

s2 + 2ζω0s+ω2
0

with ω0 = 0.5 rad/s. The parameter ζ determines the magnitude of the filter

resonance peak, and we can choose e.g. ζ = 0.02. Derive the extended state-

space model

ẋe(t) = Ae xe(t) + Beu(t) + Ne

(

v1(t)
n(t)

)

ye(t) = Ce xe(t) + v2(t)

and the associated noise intensity matrices needed to compute the Kalman

filter.

b. (*) ÏÍ Compute the Kalman filter using kalman in Matlab. Plot the transfer

function of the Kalman filter from y to x̂1 (= ŷ). Can you see the implication

of the noise modeling?

9.6 (*) Consider the task of estimating the states of a double integrator where noise

with intensity 1 affects the input only and we have measurement noise of

intensity 1.

a. Determine the optimal Kalman filter.

b. What are the Kalman filter poles?
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Solutions 9. Kalman Filtering

Solutions to Exercise 9. Kalman Filtering

9.1 a. With the problem parameters A = C = 1, the Riccati equation reduces to

2P + R1 −
P2

R2

= 0,

which has the positive solution P = R2 + R2

√

1+ R1
R2

. Thus, the Kalman

filter gain is

K = 1

R2

P = 1+
√

1+ R1

R2

= 1+
√

1+ β.

b. The Kalman filter error dynamics are given by

˙̃x(t) = (A− KC)x̃(t) + w1(t) − Kw2(t)
= −

√

1+ β x̃(t) + w1(t) − (1+
√

1+ β)w2(t)

c. The position of the Kalman filter pole is −
√

1+ β . We can see that if β →∞,

the pole of the Kalman filter → −∞. Hence, the estimation error dynamics

are fast, and the Kalman filter very much trusts the measurements. On the

other hand, if β → 0, the Kalman filter pole tends to −1, that is, as fast as

the process pole. Now, the filter trusts the process model much more than the

measurements.

9.2 a. With the problem parameters

A =
(

0 1

1 0

)

, C =
(

1

0

)

, R1 =
(

3 0

0 3

)

, R2 = 1, P =
(

p1 p2

p2 p3

)

the Riccati equation AP + PAT + R1 − PCT R−1
2 C P = 0 leads to

−p2
1 + 2p2 + 3 = 0

p1 + p3 − p1p2 = 0

−p2
2 + 2p2 + 3 = 0

with the positive solution p1 = p2 = 3, p3 = 6. The optimal P and K are thus

P =
(

3 3

3 6

)

, K = PCT =
(

3

3

)

b. The Kalman filter is given by dx̂
dt
= (A − KC)x̂ + Bu + Ky. Inserting the

problem data and the optimal K gives

dx̂1

dt
= −3x̂1 + x̂2 + u+ 3y

dx̂2

dt
= −2x̂1 + 3y
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Solutions 9. Kalman Filtering

c. See Matlab code below.

>> A = [0 1;1 0];

>> B = [1; 0];

>> C = [1 0];

>> R1 = [3 0; 0 3];

>> R2 = 1;

>> [K,P] = lqe(A,eye(2),C,R1,R2)

K =

3.0000

3.0000

P =

3.0000 3.0000

3.0000 6.0000

9.3 In each case, we are looking for the observer error covariance E x̃2 = P, where

P is given by the solution to the algebraic Riccati equation

AP + PAT + R1 − (PCT + R12)R−1
2 (PCT + R12)T = 0

a. In this case we have A = 0, C = 1, R1 = R2 = 1, R12 = 0 and the Riccati

equation becomes

1− P2 = 0

with the solution P = 1.

b. In this case we have A = 0, C = ( 1
1 ), R1 = 1, R2 =

(

1 0
0 10

)

, R12 =
(

0
0

)

and

the Riccati equation becomes

1− 11
10

P2 = 0

with the solution P =
√

10
11
( 0.95. Note that, by adding an independent

sensor with large measurement noise, we can still reduce the observer error.

c. In this case we have A = 0, C = ( 1
1 ), R1 = 1, R2 =

(

1 1
1 10

)

, R12 =
(

0
0

)

and

the Riccati equation becomes

1− P2 = 0

with the solution P = 1. In this case, adding a second sensor does not help

in reducing the observer error. An interpretation of the matrix R2 is that

the second sensor measures the same signal as the first sensor, plus some

additional noise. Hence, the second signal contains no additional information.

9.4 Taking for instance x1 as the output of 1
s+ε

and using x2 and x3 to realize
1

(s+1)2 we obtain

ẋ1 = −ε x1 + w12

ẋ2 = x1 − x2 + u+ w11

ẋ3 = −x3 + x2

y = x3 + w2
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Solutions 9. Kalman Filtering

The relevant matrices for stating the Kalman filter Riccati equation are

A =







−ε 0 0

1 −1 0

0 1 −1






, C = ( 0 0 1 ) , R1 =







1 0 0

0 1 0

0 0 0






, R2 = 1

9.5 a. We can choose for instance the controllable canonical form to realize the filter

H(s):

ẋH(t) =
(

0 1

−0.25 −0.02

)

xH(t) +
(

0

1

)

n(t)

v3(t) = ( 0 Kv ) xH(t)

Introducing the extended state vector xe = ( x
xH
) we can write the extended

system as

ẋe(t) =











0 1 0 0

0 −1 0 0

0 0 0 1

0 0 −0.25 −0.02











xe(t) +











0

1

0

0











u(t) +











0.1 0

0.1 0

0 0

0 1











(

v1(t)
n(t)

)

ye(t) = ( 1 0 0 Kv ) xe(t) + v2(t)

Thus, we have the intensity matrices R1 = diag(1, 1), R2 = 0.1.

b. See Figure 9.1 for the Bode plot of the Kalman filter transfer function from

measurement y(t) to estimated process output x̂1(t) using Kv = 1. We see a

large attenuation of frequencies at ω = 0.5 rad/s. Matlab code:

% Extended process model

A = [0 1 0 0; 0 -1 0 0; 0 0 0 1; 0 0 -0.25 -0.02];

B = [0; 1; 0; 0];

Kv = 1;

C = [1 0 0 Kv];

N = [0.1 0; 0.1 0; 0 0; 0 1]; % noise input matrix

R1 = eye(2);

R2 = 0.1;

% Design Kalman filter

sysk = ss(A,[B N],C,0);

kest = kalman(sysk,R1,R2);

Gx1hat_y = kest(2,2); % transfer function from y to x1hat

figure(1)

bode(Gx1hat_y)

9.6 a. One possible state-space realization is

ẋ(t) =
(

0 1

0 0

)

x(t) +
(

0

1

)

u(t) +
(

0

1

)

v1(t)

y(t) = ( 1 0 ) + v2(t)
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Figure 9.1 Kalman filter Bode diagram in Problem 9.5 b.

The Riccati equation

AP + PAT + R1 − PCT R−1
2 C P = 0

is solved by letting P =
(

p1 p2

p2 p3

)

. The equations become

2p2 − p2
1 = 0

p3 − p1p2 = 0

1− p2
2 = 0

The positive solution is

P =
(

√
2 1

1
√

2

)

with the optimal gain

K = PCT = (
√

2 1 )T

b. The poles of the Kalman filter are the eigenvalues of A− KC,

A− KC =
(−
√

2 1

−1 0

)

with the eigenvalues λ j =
1√
2
(−1± i).
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