
FRTN10 Exercise 4. Matlab, Loop Shaping, Preparations

for Lab 1

Matlab and Control System Toolbox

In Control System Toolbox, the basic data structure is the linear time-invariant (LTI)

model. There are a large number of ways to create, manipulate and analyze models

(see help ctrlmodels). Some operations are best done on the LTI system, and others

directly on the matrices of the model.

4.1 ÏÍ Consider the following state-space model describing the linearized dy-

namics of an inverted pendulum:
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a. Enter the system matrices A, B, and C in Matlab and use the command eig

to determine the poles of the system.

b. Define an LTI state-space model of the pendulum with the command ss. Use

the commands tf and zpk to determine the transfer function of the system.

c. Zeros, poles and static gain of an LTI model are computed with the commands

zero, pole and dcgain, respectively. Use these commands on the pendulum

model. Compare the output of pole with the results from eig.

The command tf can be used to create an LTI transfer function model. This is done

by specifying the coefficients of the numerator and denominator polynomials. E.g., to

specify the transfer function P(s) = 1/(2s+ 1) you can use

>> P = tf(1, [2 1]);

Often it is more convenient to first define the Laplace variable s using either of the

following (the second option is numerically more robust):

>> s = tf(’s’);

>> s = zpk(’s’);

and then define the transfer functions in terms of s, i.e.,

>> P = 1/(2*s+1);

To include a delay of 3 time units in P(s) you can use

>> P = 1/(2*s+1)*exp(-3*s);

To display all properties of an LTI model and their respective values, type

>> get(P)
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4.2 ÏÍ Consider the process

P(s) =
1

s2 + 0.6s+ 1
e−0.5s (4.2)

a. Define the process as an LTI system in Matlab. Use the commands step,

nyquist, and bode to plot time and frequency responses of the system. Ac-

cording to the Nyquist criterion, will the closed-loop system be stable if unit

negative feedback is applied? (To permanently change the gain unit for Bode

diagrams from dB to absolute values, try ctrlpref.)

b. Draw a singular value plot of P(s) using the command sigma and read off the

L2 gain of the system. Verify your result using norm(P,inf).

LTI systems can be interconnected in a number of ways. For example, you may add and

multiply systems (or constants) to achieve parallel and series connections, respectively.
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Figure 4.1 A closed-loop control system.

To obtain the closed-loop transfer function for a feedback interconnection of systems,

the best option is to use the command feedback. To obtain the transfer function in

the block diagram to the right in Figure 4.1 you write feedback(SYS1,SYS2). Note the

sign conventions. It it also possible to directly calculate SYS1/(1+SYS1*SYS2); however,

it is numerically better to use feedback.

For example, to calculate Gyr(s) for the system to the left in Figure 4.1, you identify

that SYS1 corresponds to P(s)C(s) and SYS2 corresponds to 1, so the command to use

is feedback(P*C,1). To calculate Gyd(s), use feedback(P,C), etc.

4.3 ÏÍ Assume that the process (4.2) is controlled by a PD controller,

C(s) = K
(

1+ sTd

)

, K = 0.8, Td = 1.2

according to the block diagram to the left in Figure 4.1.

a. Define an LTI model of the controller C(s) and find the amplitude and phase

margins for the loop transfer function L(s) = P(s)C(s). Use the command

margin.

b. Calculate the closed-loop transfer functions from r to y (output response to

reference change) and from d to y (output response to load disturbance) using

feedback, and plot their respective step responses. What is the static gain

from r to y? Can the system reject a constant load disturbance?

c. (*) Introduce integral action in the controller and repeat a. and b..
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Loop shaping, preparations for Lab 1

Exercises 4.4 and 4.5 are preparatory exercises for Laboratory Session 1. In these

exercises, we will design a feedback compensator using loop shaping for a process

described by the transfer function

P(s) =
15

(s2 + s+ 1)(s+ 3)

4.4 ÏÍ Define the process as an LTI system in Matlab. Use the commands

step, nyquist, and margin to plot time and frequency responses of the system.

According to the Nyquist criterion, will the closed-loop system be stable if unit

negative feedback is applied? Verify your conclusion by explicitly calculating

the poles of the closed-loop system.

The structure of the control system is given in Figure 4.2. In this exercise, we set

F(s) = 1 and focus on designing a feedback controller C(s) to achieve a fast enough,

robust closed-loop system that can reject slow load disturbances. For our system, this

translates to the following frequency-domain requirements:

+ ++

−1

F(s) C(s) P(s)

d n

r yu

Figure 4.2 Our control loop with reference signal r, load disturbance d, measurement noise n

and output y.

• Cross-over frequency: ω c ( 1.4 rad/s.

• Low-frequency disturbance rejection: pC(iω)P(iω)p ≥ 25 ( = 28 dB) for ω ≤
0.01 rad/s.

• Stability margins: φm ≥ 45○, Am ≥ 2 ( = 6 dB), Ms ≤ 2.

4.5 ÏÍ Design a feedback compensator that achieves the above specifications.

A recommended workflow is the following:

1. Start with a simple P controller, C(s) = K . Adjust the gain to achieve

ω c ( 1.4 rad/s and evaluate the other requirements.

2. Add a compensator to fulfill the disturbance rejection requirement. Eval-

uate the other requirements, and, if necessary, adjust the other controller

parameters.

3. Add a second compensator to fulfill the stability margin requirements.

Evaluate the other requirements, and, if necessary, go back and adjust

the other controller parameters.

For each step, also plot the closed-loop step responses of Gyr(s) and Gyd(s).
The following Matlab script can be used as a starting point:
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s = zpk(’s’); % define Laplace variable

P = 15/((s^2+s+1)*(s+3)); % define process transfer function

% 1. Try a simple P controller

K = 0.5;

C = K; % define controller transfer function

figure(1)

margin(P*C) % plot loop gain with stability margins

figure(2)

Gyr = feedback(P*C,1); % calculate closed loop r -> y

Gyd = feedback(P,C); % calculate closed loop d -> y

step(Gyr,Gyd) % plot closed-loop step responses

legend(’Gyr’,’Gyd’)

S = feedback(1,P*C); % calculate sensitivity function

Ms = norm(S,inf) % calculate maximum sensitivity

Write down the transfer function of your final controller C(s) and bring this

to the lab session. Also note the resulting stability margins φm, Am and Ms.

4.6 (*) Consider the control system in Figure 4.2, where the plant is described by

P(s) =
1

(s+ 1)(s+ 0.02)

and F(s) = 1. An unexperienced engineer has designed the controller

C(s) =
(s+ a)

s

with a = 0.02, but the resulting control system reacts extremely slowly to

step disturbances in d. The reason is that the slow pole in −0.02 is canceled

by the controller zero. The Bode diagrams of the plant, the controller, and the

open-loop system are shown in Figure 4.3.

a. The load disturbance d is typically most significant at low frequencies, so we

are interested in keeping the magnitude of the transfer function Gyd from

d to y significantly smaller than 1 in a frequency range [0,ωb]. What is

(approximately) ωb if you use the given controller? Use the Bode diagram in

Figure 4.3.

b. To reject the disturbance d faster, ωb should be increased. For noise reasons,

we want the cross-over frequency of the system to be the same.

How should the value of a in the controller be changed to achieve this?

Motivate your design by showing that:

• The range [0,ωb] where you get good disturbance rejection of d is in-

creased.

• The cross-over frequency of the system is still approximately the same.

Exact proofs are not required; some Bode-diagram reasoning will do.

4



Exercise 4. Matlab, Loop Shaping, Preparations for Lab 1

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

10
4

Bode diagram

M
a

g
n

it
u

d
e

P(s)
C(s)
P(s)C(s)

10
−3

10
−2

10
−1

10
0

10
1

−200

−150

−100

−50

0

Frequency [rad/s]

P
h

a
s
e

 [
d

e
g

]

Figure 4.3 The Bode diagrams of P(s), C(s) and the open loop P(s)C(s) when a = 0.02.
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Solutions to Exercise 4. Matlab, Loop Shaping,

Preparations for Lab 1

4.1 a. >> A = [0 1; 1 0];
>> B = [1 0]’;

>> C = [0 1];

>> D = 0;

>> eig(A)

ans =

-1

1

b. >> sys = ss(A,B,C,D);
>> tf(sys)

ans =

1

-------

s^2 - 1

>> zpk(sys)

ans =

1

-----------

(s+1) (s-1)

c. >> zero(sys)
ans =

Empty matrix: 0-by-1

I.e., the system has no zeros.

>> pole(sys)

ans =

-1

1

These are the same as you computed with eig(A).

>> dcgain(sys)

ans =

-1

Note that dcgain does not check whether the system is stable; it just computes

G(0) = C(−A)−1 B+ D.

4.2 >> s = tf(’s’);

>> P = 1/(s^2+0.6*s+1)*exp(-0.5*s)

P =

1

exp(-0.5*s) * ---------------

s^2 + 0.6 s + 1

>> step(P)

>> nyquist(P)

>> bode(P)

>> pzmap(P)
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As seen in the pole-zero map, the open-loop system is stable, as also indicated

by the step response. The Bode and Nyquist plots both show that the closed-

loop system will be stable as well.

4.3 a. >> C = 0.8*(1+s*1.2);
>> margin(P*C)

The amplitude margin is 2.79, and the phase margin is 50.7○.

b. >> Gyr = feedback(P*C,1);
>> step(Gyr)

>> dcgain(Gyr)

ans =

0.4444

>> Gyd = feedback(P,C);

>> step(Gyd)

>> dcgain(Gyd)

ans =

0.5556

The static gain from r to y is 0.44, but it should ideally be 1. The system

cannot reject a constant disturbance; the magnitude of the static error is

0.56.

c. Choosing e.g. Ti = 1, we obtain a PID controller as

>> C = 0.8*(1+s*1.2+1/s);

>> margin(P*C)

>> step(Gyr)

>> dcgain(Gyr)

ans =

1

>> Gyd = feedback(P,C);

>> step(Gyd)

>> dcgain(Gyd)

ans =

0

The closed loop now has the correct static gain and can reject constant load distur-

bances.

4.4 No solution provided.

4.5 No solution provided.

4.6 a. The transfer function from d to y is given by

Gyd(s) =
P

1+ PC

For frequencies ω ≤ 0.5 (approximately), it can be seen in the Bode diagram

that both pP(iω)p ≫ 1 and pP(iω)C(iω)p ≫ 1. Therefore Gyd(s) (
1
C

, and

pC(iω)p becomes larger than 1 for frequencies ω ≤ 0.02.

The magnitude of Gyd(s) is thus smaller than 1 in a frequency range of

approximately [0, 0.02], thus ωb = 0.02 rad/s.

This can also be seen as the frequency point where pPCp becomes larger than

pPp in the bode diagram.
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b. To increase ωb, we would like to increase the gain of C(iω) for frequencies

ω > 0.02. This is done by moving the zero in C(s) (the break-point in the

Bode diagram) from 0.02 to some higher frequency.

Choose, e.g., a = 0.1. Motivation:

• As Gyd(s) (
1
C

, and pC(iω)p now becomes larger than 1 for frequencies

ω ≤ 0.1, ωb has been increased to about 0.1.

• The cross-over frequency for a = 0.02 is ω c ( 0.8. As this frequency

is higher than the new break-point 0.1, C(iω c) ( 1 still holds [ the

cross-over frequency stays the same.
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