
Lecture 11

LQG Control

In this lecture, we study the properties of the linear-quadratic Gaussian (LQG) controller and
give several design examples.

11.1 The LQG Controller

In the previous two lectures we have derived the optimal state feedback and the optimal ob-
server for a linear system driven by white noise and with a quadratic cost function. Combining
the two solutions, we obtain an optimal output feedback controller—the LQG controller (see
Figure 11.1). The result can be summarized in the following theorem:

Theorem 11.1—LQG Control

Given a stabilizable and detectable linear plant

ẋ(t) = Ax(t) + Bu(t) + w1(k),
y(t) = Cx(t) + w2(t),

where w1 and w2 are white noise processes with the intensities Φw =
(

R1 R12

RT
12 R2

)

> 0, consider

controllers of the form

˙̂x(t) = Ax̂(t) + Bu(t) + K
(

y(t) − Cx̂(t)
)

,

u(t) = −Lx̂(t).

The stationary variance
E
(

xT Q1 x+ 2xT Q12u+ uT Q2u
)

is minimized for the S = ST > 0 and P = PT > 0 that solve

L = Q−1
2 (SB+ Q12)T K = (PCT + R12)R−1

2

0 = Q1 + AT S + S A− (SB+ Q12)Q−1
2 (SB+ Q12)T

0 = R1 + AP + PAT − (PCT + R12)R−1
2 (PCT + R12)T

The minimal variance is given by tr(S R1) + tr[P LT(BT SB+ Q2)L]
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Figure 11.1 An optimal output feedback controller—an LQG controller—consists of an optimal state feed-
back −L from an optimal state estimate x̂ (given by a Kalman filter).
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Compared to the stochastic interpretation of the linear-quadratic controller (see Lecture 9), we
note that the minimum variance is increased by tr[P LT(BT SB+Q2)L]. This term represents
the cost of having noisy measurements and an observer instead of having direct access to the
plant state.

The fact that the optimal state feedback and the optimal observer are independent of each
other is known as the separation principle. For the LQG controller this is true since the
optimal state feedback gain L is independent of the state uncertainty, and that the optimal
Kalman filter gain K is independent of the control objective. The controller transfer function
(from −y to u) of the LQG controller is given by

CLQG(s) = L(sI − A+ BL + KC)−1 K

The controller will have the same number of states as the plant model.

Example 11.1—LQG control of an integrator

Consider the problem of minimizing E(Q1 x2 + Q2u2) for
{

ẋ(t) = u(t) + w1(t)
y(t) = x(t) + w2(t)

Φw =



R1 0

0 R2




The observer-based controller




d

dt
x̂(t) = Ax̂(t) + Bu(t) + K[y(t) − Cx̂(t)]

u(t) = −Lx̂(t)

is optimal with K and L computed as follows (see the previous two lectures):

0 = Q1 − S2/Q2 [ S =
√

Q1Q2 [ L = S/Q2 =
√

Q1/Q2

0 = R1 − P2/R2 [ P =
√

R1 R2 [ K = P/R2 =
√

R1/R2

The optimal controller in this example is a proportional controller with a low-pass filter. Note
that the state feedback gain L only depends on A, B, Q1 and Q2, while the Kalman gain
K only depends on A, C, R1 and R2.

11.2 Tuning the LQG controller

The LQG controller is a function of the given problem parameters. It can be tuned by adjusting

the cost matrix Q =
(

Q1 Q12

QT
12 Q2

)

and the noise matrix R =
(

R1 R12

RT
12 R2

)

.

Tuning of Q

Only in rare instances does a quadratic cost function follow directly from the design specifi-
cation. In most cases, the cost function must be iteratively tuned by the designer to achieve
the desired closed-loop behavior. One possible starting point is to only penalize the outputs
y = Cx and the inputs u. We can then put Q1 = CTC, Q2 = ρ I, and Q12 = 0. For cases where
the state variables have a physical interpretation, another option is let the diagonal elements
be equal to the inverse value of the square of the allowed deviations:

Q1 =




1
(xmax

1 )2 . . . 0

...
. . .

0
1

(xmax
n )2




, Q2 =




1
(umax

1 )2 . . . 0

...
. . .

0
1

(umax
m )2




, Q12 = 0
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11.2 Tuning the LQG controller

Besides the above, some general guidelines can be given:

• To achieve higher bandwidth (more aggressive control), decrease Q2 or increase Q1.

• To increase the damping of a state x j, add penalty on ẋ2
j .

• (Advanced:) To make a state x j behave more like ẋ j = −αx j, add penalty on (ẋ j+αx j)2.

Note that last two options typically introduce cross-terms in the cost function.

Example 11.2—LQ control of the flexible servo

Consider linear-quadratic control of the flexible servo used in Lab 1 (see the lab manual for
parameter values):

m1
d2 y1

dt2
= −d1

dy1

dt
− k(y1 − y2) + u(t)

m2
d2 y2

dt2
= −d2

dy2

dt
+ k(y1 − y2)

Introducing the state vector x = ( y1 ẏ1 y2 ẏ2 )T , the plant can be written in state-space
form as

ẋ = Ax+ Bu

y1 = C1 x

y2 = C2 x

The impulse response of the open-loop system is shown in Figure 11.2(a). We would like to
control the plant to make the output y2 settle to zero within 2 seconds and without too much
oscillations.

In the first design iteration, we penalize the output y2 and u equally, setting Q1 = CT
2 C2 and

Q2 = 1. The resulting closed-loop response is shown in Figure 11.2(b). The system is a bit too
fast—especially the control signal is out of bounds (±10 for the real process).

We can slow the system down by increasing the penalty on u: In the second iteration we keep
Q1 = CT

2 C2 and set Q2 = 100. The new response is shown in Figure 11.3(a). The speed is now
appropriate, but the oscillations need to be better damped.

In the third iteration, we add a penalty on ẏ2 = C2 ẋ = C2(Ax+Bu) to improve the damping. In
this case C2 B = 0, so the new weighting matrices are chosen as Q1 = CT

2 C2+0.1(C2 A)T(C2 A),
Q2 = 100. The closed-loop response is seen in Figure 11.3(b). The damping is now better, but
since the relative size of Q2 is now smaller, the controller is again a bit too aggressive. In a
final iteration (not shown), the relative penalty on y2, ẏ2 and u can be fine-tuned.
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Figure 11.2 Flexible servo example: (a) Open-loop impulse response, (b) first design iteration.
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Figure 11.3 Flexible servo example: (a) Second design iteration, (b) third design iteration.

Tuning of R

When designing the Kalman filter, the properties of the real noise are seldom known. Noise
can also used to model process uncertainty and nonlinearities, for which there is often not a
good model available. As a starting point for tuning the filter, one can put R1 = BBT (input
noise) or R1 = I (noise on all states), R12 = 0 and R2 = ρ I. If the controller is too sensitive
to measurement noise, one should increase R2 or, equivalently, decrease R1. Making R2 too
large can however impair the robustness of the system, if the Kalman filter becomes too slow
compared to the state feedback. The problem of robustness is discussed in the next section.

11.3 Robustness of LQG

Recall from Lecture 9 that LQ state feedback control has remarkable robustness properties.
Under certain assumptions, the maximum sensitivity is guaranteed not to be larger than
1. Unfortunately, this property no longer holds when the LQ controller is combined with a
Kalman filter into an LQG controller. This was famously shown in a 1978 paper by John
Doyle with the title “Guaranteed Margins for LQG Regulators.” The abstract plainly stated,
“There are none.” Even for plants without fundamental limitations, it is possible to construct
examples where the stability margins become arbitrarily small.

Example 11.3—[Doyle & Stein, 1979]
Consider the minimum-phase SISO plant

ẋ =


−4 −3

1 0


 x+




1

0


 u+




61

−35


 w1

y =

 1 2


 x+ w2

where the white noise process w = (w1 w2 )T has unit intensity, R = I. An LQG controller
is designed to minimize

J = E

(

80 xT


 1

√
35√

35 35


x+ u2

)

The resulting closed-loop system is stable, with control poles in −7 ± 2i and observer poles
in −7.02± 1.95i. Plotting the Nyquist curve of the loop gain (see Figure 11.4(a)) reveals very
poor stability margins: Ms = 4.8 and φm = 14.8○. In this example, the Kalman filter interferes
with the state feedback to create an unrobust system.
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11.4 Integral action, reference values
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Figure 11.4 Doyle–Stein example: (a) Original example (b) Example with loop transfer recovery.

Loop transfer recovery

Much research has been spent on trying to improve the robustness of LQG. A design method
known as loop transfer recovery (LTR) suggests that the robustness of an LQG controller can
be improved by modifying the design weights Q or R. In output LTR, an extra penalty term
proportional to CTC is added to Q1. In input LTR, an extra noise term proportional to BBT is
added to R1. Both of these methods tries to make the loop transfer function more similar to
the state feedback (LQ) case. The price is that the resulting controller will have higher gain,
which gives more amplification of measurement noise and larger control signals.

Example 11.4—Doyle & Stein with LTR
Again consider the example from [Doyle & Stein, 1979]. To improve the robustness, we apply
output LTR and modify the Q1 matrix according to

Qnew
1 = Q1 + 400CTC.

The resulting loop gain in shown in Figure 11.4(b). The Nyquist curve now avoids the critical
point, giving better robustness (Ms = 2.0, φm = 30○).

11.4 Integral action, reference values

In the previous lecture we introduced noise shaping as a way to introduce integral action
in the Kalman filter (and hence also in the observer-based controller). Another option is to
introduce integral action in the state feedback part of the controller. The idea is to extend the
process model by adding explicit integrators as

ẋi = r− y

where r is the vector of reference signals and y is the vector of measured outputs. (If an
output is not measurable, an estimate from the Kalman filter can be used instead.) This
provides a nice way to introduce tracking of reference signals in the control system. With one
integrator per output, the system can track reference signals without stationary error also in
the presence of constant load disturbances.

Given a plant model (A, B, C, 0), the methodology above gives an extended plant model




ẋ

ẋi


 =




A 0

−C 0







x

xi


+




B

0


 u+




0

I


 r+




I

0


 w1.
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The Q1 matrix is analogously extended as

Q1e =



Q1 0

0 Qi


 ,

where Qi is the penalty on the integral states. We can then design an extended state feedback
law using LQ theory:

u = −

 L Li







x

xi


 .

The control can also be extended with direct feedforward from r to further shape the command
signal response.

Feedforward from the reference signal can also be used to introduce setpoint tracking without
integral action. Introducing the control law

u = −Lx+ Lrr,

the closed-loop transfer function is given by

Gyr(s) = C(sI − A+ BL)−1 BLr

Assuming a square plant (equal number of inputs and outputs), we can achieve a static
closed-loop gain of I by selecting the feedforward gain as

Lr = [C(BL − A)−1 B]−1

A reference filter to further shape Gyr(s) can be added if needed.

Example 11.5—LQG control of DC-servo

As a final example, we develop a complete LQG controller for a simple DC servo model,
including integral action and reference tracking. We will return to this example in future
lectures. Assuming the basic control loop in Figure 11.5, the process is given by

P(s) = 20
s(s+ 1) ,

and the white noise processes v1 and v2 are independent with intensities R1 = R2 = 1. The
goal is to find the LQG controller that minimizes

J = E
(

z2 + u2)

A state-space model of the plant is given by




ẋ1

ẋ2


 =

A︷ ︸︸ ︷


0 0

1 −1







x1

x2


+

B︷ ︸︸ ︷


20

0


 u+

G︷ ︸︸ ︷


20

0


 v1

y =

 0 1




︸ ︷︷ ︸
C




x1

x2


+ v2 z = x2

r
P(s)F(s) C(s)

−1

ΣΣΣ
u

v1 v2

z y

Figure 11.5 Basic control loop for LQG control of a DC servo.
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11.4 Integral action, reference values
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Figure 11.6 “Gang of four” for the LQG-controlled DC servo.

Solving the algebraic Riccati equations for the LQ state feedback and the Kalman filter in
Matlab gives the optimal controller

˙̂x = (A− BL − KC)x̂+ Ky

u = −Lx̂

with

L =

 0.2702 0.7298


 , K =




20.0000

5.4031


 .

The result of any optimization-based controller design must always be carefully examined
to see that it is reasonable. The “Gang of four” Bode magnitude diagrams for the LQG-
controlled system are shown in Figure 11.6. It is seen that the bandwidth of the closed-loop
system is close to 10 rad/s, and that the maximum sensitivities look reasonable. However, the
closed-loop transfer function from plant disturbance to output, P/(1+ PC), reveals poor low-
frequency disturbance rejection properties. To remedy this problem, we add integral action to
the controller. Adding an explicit integrator, ẋi = r− y, we get the extended process model




ẋ1

ẋ2

ẋi



=

Ae︷ ︸︸ ︷


0 0 0

1 −1 0

0 −1 0







x1

x2

xi



+

Be︷ ︸︸ ︷


20

0

0




u+




0

0

1




r+




20

0

0




v1

Minimization of the extended cost function E
(

x2
2 + Qi x

2
i + u2

)

with Qi = 0.01 then gives the
optimal state feedback

u = −Le


 x̂ xi




where
Le =


 0.2751 0.7569 −0.1




In the output feedback controller, we can use the same Kalman filter as before, since xi

is known by the controller. Plots of the new “Gang of four” Bode diagrams are shown in
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Figure 11.7 “Gang of four” for the LQG controller with integral action

Figure 11.7. It is seen that P/(1 + PC) now tends to zero for low frequencies, which shows
that the controller has indeed integral action. The speed of integration, which influences both
the disturbance rejection and the reference tracking speed, can be adjusted by tuning of the
integral state penalty Qi.

11.5 Summary of LQG

The LQG methodology provides a systematic way to design stabilizing controllers for any linear
plant model, including MIMO systems. The theory is well developed, and there exist analytical
solutions as well as efficient software to produce the controllers. The observer structure ties
nicely to reality if the states of the model have a correspondence in the physical system.
Extensions with noise shaping, integral action and reference tracking are straightforward.

There are some potential disadvantages: First, a detailed state-space model of the plant is
required. This can be very time-consuming to obtain. Second, the controller has the same
order as the plant, which can lead to very high-order controllers if the model has many
states. Third, it can be difficult to tune the cost and noise design weights. Often, several
iterations are needed, together with insights of the physical process and its limitations. As
usual, any fundamental limitations due to right half-plane zeros, poles, and time delays must
be respected. Finally, the LQG controller has no guaranteed robustness, so the results must
always be carefully checked.

The robustness problems with LQG led to the development of robust control theory in the
1980s. In the branch known as H∞ optimal control, the objective is to minimize the maximum
closed-loop gain from disturbances w to performance outputs z:

Minimize sup
ω
qGzw(iω)q
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11.5 Summary of LQG

This formulation ties closer to the shaping of the “Gang of four” closed-loop transfer functions
and gives much better control of the stability margins Ms and Mt. Similarly to LQG, the
solution can be obtained by solving a couple of algebraic Riccati equations.

In general, controller optimization can use a mix of objectives for the closed-loop system,
including H2 (LQG) and H∞ criteria, as well as various constraints. This more general
setting will be the topic of the final section of the course.

85


