
Lecture 10

Kalman Filtering

In this lecture we introduce the optimal linear state estimator known as the Kalman filter.
The filter is optimal under the assumption that the plant is a linear system driven by white
noise and that we want to minimize the mean square of the estimation error. Combined with
an optimal linear state feedback (the LQ controller, developed in the previous lecture), they
together form a linear-quadratic Gaussian (LQG) controller, see Figure 10.1.
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Figure 10.1 The LQG controller is optimal for a linear plant driven by white noise with a quadratic
performance index.

The LQG controller minimizes a performance index of the form

J = E
{

xT Q1 x+ 2xT Q12u+ uT Q2u
}

,

which can be seen as a weighted sum of the stationary variance of the signals in the control
loop. Under the assumption of white process and measurement noise, all signals in the loop
will be Gaussian.

10.1 Output feedback

A controller that is composed of a state observer and a feedback from the estimated state is
called an output feedback controller, see Figure 10.2. In this lecture we will assume that the
plant is subject to process disturbances w1 as well as measurement noise w2. In state-space
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Figure 10.2 An output feedback controller.
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form, a plant description is then

dx(t)
dt

= Ax(t) + Bu(t) + w1(t)

y(t) = Cx(t) + w2(t)

The controller consists of an observer that produces a state estimate x̂ and a linear feedback
from that estimate:

dx̂(t)
dt

= Ax̂(t) + Bu(t) + K[y(t) − Cx̂(t)]

u(t) = −Lx̂(t)

Combining the two system descriptions above, we can formulate the closed-loop system and
eliminate u and y as follows:

dx(t)
dt

= Ax(t) − BLx̂(t) + w1(t)
dx̂(t)

dt
= Ax̂(t) − BLx̂(t) + K[Cx(t) − Cx̂(t)] + Kw2(t)

Introducing the observer error x̃ = x − x̂, the state of the closed loop can equivalently be
represented by [x x̃]T , which has the dynamics

d

dt

[

x(t)
x̃(t)

]

=
[

A− BL BL

0 A− KC

] [

x(t)
x̃(t)

]

+
[

w1(t)
w1(t) − Kw2(t)

]

(10.1)

Note the block triangular structure of the system matrix. The eigenvalues of the state feedback
(called the control poles) and of the Kalman filter (called the observer poles) are separate and
are given by det(sI − A+ BL) = 0 and det(sI − A+ KC) = 0, respectively. This implies that
the state feedback and the observer can be designed independently of each other. A formal
statement regarding this separation principle will be given in the next lecture.

The state observer has in general dual goals: to estimate those state variables that cannot
be directly measured and to filter out measurement noise. These goals are in general in
conflict with each other. From the equation above we can see that we can make the observer
error converge faster by increasing the filter gain K . At the same time, this will amplify the
measurement noise w2 more. In the next section we will find the optimal balance between the
speed of estimation and the measurement noise attenuation in the Kalman filter.

10.2 The Kalman filter

The Kalman filter was first developed by Rudolf Kalman for discrete-time linear dynamical
systems in 1960. A year later the results were extended to continuous-time systems by
Kalman and Bucy, and this formulation is what we will use in this lecture. Kalman’s great
innovation was to give a state-space formulation of the optimal filtering problem, which
allowed a recursive update of the estimate based on the most recent measurement value.
As a bonus, the filter can also handle time-varying system and noise parameters. Previous
optimal linear filtering results by Norbert Wiener (1949) were only applicable to stationary
input-output formulations.

In feedback control applications we are most often interested in the optimal state estimate
given measurements up to and including the current time. This is called the filter case. When
treating prerecorded measurement data, a better estimate can be obtained by also considering
measurements ahead of the current point—this is called smoothing. Another variant is to try
to predict future values based on old measurements—this is called the prediction problem.
Mathematically, the general problem is to estimate x(k + m) given {y(i), u(i) p i ≤ k}, see
Figure 10.3. In this lecture we will only discuss the filter problem, but the solution to the
general problem is a simple extension.
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Figure 10.3 Smoothing, filtering, and prediction are variants of the same general problem: to estimate
x(k+m) given {y(i), u(i) p i ≤ k}.

Derivation of the Kalman filter

The Kalman filter can be derived in a number of different ways, under various assumptions.
Here we will assume that the process is a continuous-time linear system driven by white
noise, and that the filter has the structure of the standard linear observer discussed in the
previous section. Further, we assume that the plant is detectable, meaning that any unstable
modes must be observable. Starting from (10.1), the observer error dynamics are given by

dx̃

dt
= (A− KC)x̃+


 I −K







w1

w2




The disturbance process w = (w1 w2 )T is assumed to be white with constant spectral density

Φw(ω) =



R1 R12

RT
12 R2


 > 0

To find the optimal observer, we are seeking the observer gain K that minimizes the stationary
observer error variance

P = E x̃ x̃T .

Assuming (A − KC) to be stable, the stationary variance P can be calculated from the
Lyapunov equation

(A− KC)P + P(A− KC)T +

 I −K







R1 R12

RT
12 R2







I

−KT


 = 0

Completing the square,

AP+PAT+R1+(K−(PCT+R12)R−1
2 )R2(K−(PCT+R12)R−1

2 )T

−(PCT+R12)R−1
2 (PCT+R12)T = 0

we find that the minimium variance will be attained for the filter gain

K = (PCT+ R12)R−1
2

What remains is an algebraic Riccati equation,

AP + PAT + R1 − (PCT+ R12)R−1
2 (PCT+ R12)T = 0

We summarize the result in the following theorem:
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10.3 Examples

Table 10.1 Conversion of parameters between the LQ control problem and the Kalman filtering problem

LQ control Kalman filter

A AT

B CT

Q1 R1

Q2 R2

Q12 R12

S P

L KT

Theorem 10.1—The Kalman filter

Given a detectable linear plant disturbed by white noise,
{

ẋ = Ax+ Bu+ w1

y = Cx+ w2
Φw =




R1 R12

RT
12 R2


> 0

the optimal observer (in the mean-square error sense) is given by the Kalman filter

dx̂

dt
= Ax̂+ Bu+ K(y− Cx̂)

where the Kalman gain K is given by

K = (PCT+ R12)R−1
2

where P = E(x− x̂)(x− x̂)T is the positive definite solution to

AP + PAT + R1 − (PCT+ R12)R−1
2 (PCT+ R12)T = 0

Note that the solution does not depend on what states we are interested in. The Kalman filter
produces the optimal estimate of all states at the same time. Further, the optimal observer
gain K is static since we are solving a steady-state problem. The Kalman filter can also be
derived for finite-horizon problems and problems with time-varying system matrices. We then
obtain a Riccati differential equation for P(t) and a time-varying filter gain K(t).

Duality between LQ control and Kalman filtering

The optimal state feedback problem and the optimal filtering problem display many similari-
ties, and they are in fact dual problems. The algebraic Riccati equations associated with both
problems are very similar, and one problem can be symbolically translated into the other
using Table 10.1.

10.3 Examples

Here we give two different examples of Kalman filtering.

Example 1. Consider an integrator process with both process and measurement noise:

ẋ(t) = w1(t)
y(t) = x(t) + w2(t)

Φw =



R1 0

0 R2
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The Kalman filter for the process is given by

dx̂

dt
= Ax̂(t) + Bu(t) + K[y(t) − Cx̂(t)]

where K is obtained by first solving the algebraic Riccati equation,

R1 − P2/R2 [ P =
√

R1 R2,

which then yields the filter gain

K = P/R2 =
√

R1/R2

Note that the optimal gain only depends on the ratio of R1 and R2. When R2 is large compared
to R1, the filter attenuates measurement noise by reducing the gain K . At the same time the
filter pole A− KC = −K becomes slower, which gives slow error convergence. In the Laplace
domain, the filter equation becomes

X̂(s) = K

s+ K
Y (s)

which shows that the Kalman filter in this case is a first-order low-pass filter with a break
frequency that depends on

√
R1/R2. ✷

Example 2. Consider the problem of tracking a moving object in two dimensions, relying on
very noisy GPS position readings, see Figure 10.4(a). Not knowing anything about the object
we are tracking, we can model it as a double integrator in each dimension, driven by white
noise. Let (p1, p2) denote the position coordinates. We can then set up the dynamical model

p̈1 = w1

p̈2 = w2

where the noise processes w1 and w2 are assumed independent for simplicity. Introducing the
state vector

x = ( p1 ṗ1 p2 ṗ2 )T
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Figure 10.4 Tracking of a moving object in two dimensions: (a) Position measurements with noise. (b)
Position estimates from a Kalman filter.
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10.4 Frequency-domain noise shaping

we can write the model in state-space form as

ẋ =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0




x+




0 0

1 0

0 0

0 1




w11

y =



1 0 0 0

0 0 1 0


 x+ w12

To design a Kalman filter we need to specify the noise intensities, which are unknown to us.
Fixing the process noise intensity to R1 = ( 1 0

0 1 ), we can tune the speed and noise attenuation
of the filter by selecting different values of R2. A larger value of R2 gives better noise rejection
but slower tracking. A simulation of the output of the Kalman filter starting with the initial
condition x̂(0) = ( 0 0 0 0 )T is shown in Figure 10.4(b). ✷

10.4 Frequency-domain noise shaping

So far we have assumed that the process disturbance w1 and the measurement noise w2 have
constant spectral densities. Recall from Lecture 3 that, in many cases, we have some knowl-
edge about the characteristics of the disturbances. For instance, load disturbances are often
dominated by low frequencies, while measurement noise has more high-frequency components.
The Kalman filter can be tuned in the frequency domain by extending the plant model with
filters that shape the process disturbance and measurement noise spectra accordingly. The
idea is illustrated in Figure 10.5(a). The spectrum of the process disturbance is shaped via
the filter H1, while the spectrum of the measurement noise is shaped via the filter H2. The
relative size of pH1(iω)p and pH2(iω)p at each frequency will then influence the gain of the
Kalman filter for that particular frequency. Modeling a large input disturbance will increase
the Kalman gain, while a large measurement disturbance will decrease the gain. It can be
shown that the Kalman filter will have zeros at the locations of the poles of the output noise
filter H2(s).

A common example of this design approach is to model an integral disturbance acting on the
process input, see Figure 10.5(b). Since the Kalman filter contains a model of the plant, this
will introduce an integrator in the Kalman filter. The disturbance state xi will be observable
but not controllable. The effect of the input disturbance can however be canceled out by the
controller by extending the feedback law according to

u(t) = −Lx̂(t) − x̂i(t)

A different way to introduce integral action in the LQG controller will be discussed in the
next lecture.
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Figure 10.5 Extended plant models with shaped noise. (a) General input and output noise filters. (b)
Integrator input disturbance.
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